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Synopsis

The distribution of the octupole oscillator strength, arising from one-phonon 
excitations of density variation modes in even-even spherical nuclei, is analysed 
on the basis of an interaction consisting of pairing + octupole-octupole force.

Special attention is paid to the isospin structure of the states.
It is found that, in many cases, two or three lines of comparable strength 

occur in the low-energy spectrum (< 5 MeV).
The experimental evidence on energy and transition probability, which is 

available almost only for the very lowest state, can be accounted for reasonably 
well by a strength constant for the octupole-octupole force which varies smoothly 
with the atomic number.
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1. Introduction

In recent years, a theory has been developed which gives a description 
of the density variation inodes of nuclear vibrations in terms of single

particle excitations. This represents an improvement upon older, more 
phenomenological theories, not only by relating the collective and the single
particle aspects, but also by comprising in the same picture all degrees of 
collectiveness of the spectrum.

In a quantal system like a nucleus, density variations occur due to 
transitions of one or more particles between different states. When a particle 
is excited (a particle-hole pair created out of the ground state), the corre
sponding fluctuations in the nuclear field affect the motion of the other 
particles and tends to generate other particle-hole excitations.

Thus, because of the interaction between the particles through the field, 
the randomly distributed fluctuations from different single-particle excita
tions come in phase, and a more or less collective movement of the particles, 
a vibration, arises.

The octupole vibrations which we shall study are known from experi
ment to be less collective than the quadrupole ones. They should be more 
intimately connected to the details in the single-particle level scheme, and 
the oscillator strength in the low energy part of the spectrum might be 
spread over several levels.

The lowest octupole excitation has been studied by Yoshida (ref. 1) in 
a few cases.

In the present work we shall extend the investigation of the octupole 
excitation of lowest energy to a wider region of the periodic table. This 
gives information about the way in which the coupling constant for the 
effective force must vary with the atomic number in order to reproduce the 
observed energies. We are also going to study the excitations of higher energy 
and the whole energy distribution of the oscillator strength. It may be men
tioned here that from the calculation two rather strong lines appear frequently 
in the low-energy region (2 — 5 MeV).
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Since the isospin character of the vibrational states has been discussed 
only briefly before, we pay special attention to this problem and the relation 
to the isospin dependence of the field producing force (the long-range com
ponent).

2. The Hamiltonian

The “microscopic” description of collective excitations of a many-body 
system was introduced in nuclear physics by several authors, and we meet 
it under different names (method of linearized equations, random phase 
approximation, Sawada method, Baranger method, quasi-boson approxima
tion, generalized Tamm-DancofT method) (refs. 2 and 6). It has been used 
by several investigators, e.g., by Yoshida (ref. 1) in the study of quadrupole 
and octupole vibrations in some cases of spherical nuclei, by BÊS, by 
Marshalek, and by Soloviev et al. for deformed nuclei (ref. 3), and by 
Kisslinger and Sorensen for quadrupole oscillations in a wide region of 
the periodic table (ref. 4). Since the theory has been presented repeatedly, 
we shall only mention here as much as is needed for introducing definitions 
and notations (which are almost the same as that used by Yoshida (ref. 1)). 
We consider spherical even-even nuclei. The particles are supposed to move 
in a shell-model potential, interacting by a short-range and a long-range 
force. Thus, the Hamiltonian is

H = //(shell mod.) +//(short range) +//(long range). (2.1)

The short-range part of the interaction

The short-range part of the interaction is represented by a pairing force 
(ref. 5). Only that part of the pairing which influences the particles in the 
partly filled shells is taken into account, and pairing between neutrons and 
protons is not included.

The pairing + shell-model part of the Hamiltonian is

//(shell model) + //(short range)

= 2 </. m, /0)
jmt„

2 «+0"nn'>/o)^+0’/> -tn'JoXj,-n7,/0)a(j,m,f0) 
j', m',
3, m,t0
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Here, t0 is the z component (or the v = 0 spherical tensor component) of the 
isospin of the particle with the convention

I for protons 
I—I for neutrons,

e(j,t9) is the shell-model single-particle energy, a+ (j, in, f0) and o(j,/n,/()) are 
creation and annihilation operators for a particle in the state j, in, t0 (j 
represents all quantum numbers necessary to specify the state, with the 
exception of t0 and the magnetic quantum number in). The force constant 
in the pairing G(t0), and the number of particles n in the partly tilled shell 
are inserted into the BCS equations (2.4) and (2.5) which are solved for 
protons and neutrons separately with respect to the quantities Â(/o) and 
^Go):

'V ./ + j = 2 
Ze(jU0) G(Q’ (2-4)

Sy20’^o) x (2J + 1) = n, 
j

where
E(j, ^o) = ((£(Å ^o) - X Q)2 + ^2('o))1/2>

(2-5)

(2-6)

£(Z to) -^0o)\
(2.1)

Here, E(j,t0) is the quasiparticle energy, A(/o) the chemical potential or Fermi 
energy, A (f0) the gap, v2(j, t0) is the probability for the shell-model level 
jint0 to be filled. The probability for it to be empty is

u2(Po) = 1 - y2G’Jo). (2.8)

The index t0 is often omitted below.
Since the octupole oscillations involve mainly single-particle transitions 

between different shells, the pairing has less influence than for the quadru
poles. It has been checked that uncertainty in the pairing strength constant 
G is less significant than uncertainties in other parameters. Thus, in almost 
all cases (cf. sect. 14) we have used a standard value for G/A (A is the 
atomic number).
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(2.9)

where the quantity
1/2

(2.10)a

(2.11)

r\3
- Ij277ï2>

3/ being the nucleon mass and co0 the frequency of the harmonic oscillator 
used in the shell-model potential. (For further details, see below). In the 
force constant z we have introduced the isospin of the nucleons t (1) and 
T(2).

Assuming the interaction to be invariant under rotations in isospin space, 
we can write z in the form

The long-range part of the interaction

We shall simulate the interaction between the particles through the 
octupole part of the nuclear field by an effective force of attractive long- 
range octupole-octupole type, working between all nucleons. Expressed in 
terms of creation and annihilation operators it takes the form

where /r(l) and /r(2) are spherical components of the isospins of the par
ticles. Thus, z0 represents the isoscalar or r = 0 component of the force, 
and the isovector or t = 1 part. In the following section we come back 
to the relative magnitude and sign of Zj and z0.

Below we concentrate on that part of the field which acts on protons or 
neutrons, bid does not change neutrons into protons, or vice versa. In that 
case, only the v = 0 part of the force is working and thus it is the only part 
which is considered in the treatment below. The v 4= 0 components are 
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relevant when exciting vibrations in the neighbouring odd-odd nuclei (cf. 
sect. 4).

Since the force is introduced to describe the variations in the field, we 
shall only take into account the field-producing part of the interaction (i.e. 
the annihilation matrix element in the particle-hole interaction).

The radial dependence in the field is not very well established. Our 
choice is made mainly for the sake of simplicity, and further investigations 
would be of great interest.

We shall primarily study the low-lying, strong excitations, which are sup
posed to be connected to vibrations of the nuclear surface. With our expres
sion for the radial matrix element the surface region obtains a heavy weight. 
It may be that contributions to the field interaction from single-particle 
transitions j -+ j', involving changes in the principal quantum number of the 
harmonic oscillator |dlV| = 3, are not properly weighted in our picture. For 
instance, particles with a tail far outside the nucleus probably give rise to 
much smaller polarization of the core than supposed by the r3 dependence 
which attributes a great influence to the outermost part of the wave function. 
A better dependence might be obtained, e.g., by using the radial derivative 
of a Saxon-Wood potential. The effect should be especially significant for 
the resulting high-energy modes, whereas the low-cnergv modes should be 
less affected. For our choice of force il appears that, for single-particle 
transitions with AN = 1, the radial matrix elements are all of the same order 
of magnitude, even when squared. (The smallest values are obtained when 
the change in the number of radial nodes is maximal).

This means that the radial part of the interaction does not give rise to 
strong cancellation of any of the contributions from the single-particle transi
tions of low energy. For the A N = 3 terms the square of the radial matrix 
element is fluctuating more strongly, sometimes being quite small when a 
great change in the number of radial nodes is involved. Roughly speaking, 
the squares of the A N = 3 radial matrix elements are half as large as the 
A N = 1 terms. The angular part of the matrix clement is very sensitive to 
whether spin flip is involved or not. E.g., the square of the reduced matrix 
element is about 20 times larger for q. q = 7/2, 13/2 than for jpji = 9/2, 13/2.

It may finally be mentioned that it is still an unresolved problem whether 
the isospin independent (t = 0) field and the isospin dependent field (r = 1) 
are of the same radial structure. (For a definition of r, see sections 3 and4). 
You might suggest that for the r = 1 modes volume phenomena play a greater 
role compared to surface phenomena than for r = 0 modes and, thus, that the 
radial dependence of the t = 1 field is slower than for the r = 0 field.
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3. The excitations

For the total Hamiltonian H (2.1) the quasi-boson approximation is used. 
We describe the excitation as a superposition of two-quasiparticle creations 
and annihilations and write the excitation operator B+ (a) in the form

B+(a) = 2 \/J(aJl>./2’/o)<./ïnî1727îî2l2 3/f>a+(./l>”h>/o)a+02-7n2’/o)

2 {Xa’.7v t0)p^,,j1,j2, to) - (l^Jv.i2, /0)} = (3.6)
ji izto

Following the common procedure (ref. 6) we end up by eq. (3.7) the solu
tions 7? co of which are the resulting energies

mforøa (3-1)

+ ( -)/Z7(a Ji J2> Q 01 nllJ2 m2 13 - A> a(j2» m2> {o) X(.J1> nh> zo)} -

where the quasiparticle creation and annihilation operators are given by

a+(j,m,/0) = (3-2)

= u(j,t0)a(j,m,t0) - (-l)}~mv(j,t0)a+(j, - m,t0). (3.3)

This means that the two-quasiparticle excitations (each having energy 
E(j\) + E(j2)), are considered to be elementary oscillators which are coupled 
by the long-range part of the force. In the expression for B+(oc), j\ and /2 
run over all possible proton and neutron states, but each pair should only 
be taken once, i.e. if Jij2^o is included, jajx 70 should not be.

Now, 7?+(a) working on the ground state |0>, gives the excited state 
I a) with energy

|a> = 71+(a)|0> (3.4)

and 71(a) |()> = 0, where B(a.) is the hermitian conjugate to 71l_(a). We 
further have

- hai^B+Cœ) (3.5)

which, on inserting (3.1), gives the expressions (12.1) and (12.2) for 
t0) and <7(a,./J2/0) used in sect. 12.

The orthonormality of the states gives (taking as above in eq. (3.1) each 
pair only once)
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(3.7)

or

(3.8)

Here,

a
(3-9)

3

(3.10)

(3.11)= XQ + Xj ,

(3.12)x0 - Xi .

determination of hco reduces to

(£()) +E(D)2 - (71 <u)2

If Xj = 0, the equation (3.8) for the

^np

nP gp <^n _ Q
49 K

s”=z-

h'
where the sum runs over all possible proton states j and j', which may be 
coupled to spin and parity 3_. The analogous neutron quantity is denoted 
by Sn.

The first term in the numerator in Sp is an ordinary reduced matrix 
element

In ref. 1 Yoshida presents a table showing the matrix elements of l-j , using 

harmonic oscillator wave functions. The quantities xp, xn and xn„ are the 
octupole-octupole force constants for the proton-proton, neutron-neutron 
and neutron-proton force, respectively. For these we have used the expres
sions (2.11):

Z = X n p

SP + Sn=7 (3.13)
x0

which is the usual secular equation, and x0 = 0 gives

S2’ + Sn= . (3.14)
Xi
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The analogue to this equation has been discussed for dipoles (ref. 7) for 
which the opposite sign convention has been used in general.

In order to provide an idea of the variation of the force constant x with 
A we may use a simple scaling argument.

If we assume the matrix elements to represent an interaction with a range 
short compared to the nuclear radius, the interaction matrix elements are 
inversely proportional to the nuclear volume, i.e. ~ 1/A. Since each of the 
factors (zy/n)3 and (r2/u)3 varies proportional to A , we expect x to be pro
portional to A-2.

In our treatment we look apart from couplings to other modes, although 
such effects may sometimes be of importance. Thus, the resulting states of 
excitation energies more than some few MeV appear in regions with large 
level density. In such a situation the present calculation is only expected to 
give the gross structure of the 3” distribution.

For the low-lying states, the most important couplings may be those to 
modes which involve large amplitudes. Thus the couplings to the strongly 
collective quadrupole vibrations of very low energy are expected to be of 
special significance.

In deformed nuclei, we know that this coupling causes a splitting of 
octupole modes with different K values. In the present calculation the most 
interesting modification of the results which this effect may cause may be 
that the strength of the strong octupole line, which in the following calcula
tion is often found in the 4-5 MeV region, may be spread over several 
states, which may be imagined as arising from the coupling of a 3_ phonon 
to one or more 2 + phonons.

The isospin of the excitation

In this section we are going to discuss briefly the isospin properties of 
the excitations, which properties so far have been neglected.

In the same way as the excitation in ordinary space can be described 
by the spherical tensor quantum numbers 2, /<(2 = 3 in our case), it may 
in isospin space be characterized by analogous quantities r, v, where r 
must be cither 0 or 1 in the present treatment. The excitation operator 
B+(r, v; A,//,) may e.g. be of the type

J/(r = 0; 2 = 3,/z) = y3/z(0 (3.15)
ior
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(3.16)

where i runs over all particles in the nucleus (cf. sect. 4). We shall use the 
matrix elements of the M operators between the ground state and the excited 
states to describe the isospin structure of the excitations, as further explained 
in sect. 4.

The matrix elements of M(r = 1, v = 1; 3,p) arc non-vanishing only 
when the excitation involves creation of a neutron hole, proton pair, i.e. 
when it leads to another nucleus. Such an excitation may be realized by a 
(p, n) scattering on the nucleus. In the same way r, v = 1, -1 leads to the 
excitations of a neighbouring nucleus Z, A^-Z — 1, A, e.g. by an (n, p) process. 
Such excitations and their relevance to the present treatment are discussed 
briefly in sect. 4. The t = 0 or r, v = 1,0 excitations give rise to states in 
the target nucleus and, as we shall see below, these two excitations are in 
general mixed, although the strong low-lying states to a good approximation 
are r = 0.

As pointed out by Lane and Soper (ref. 8) and later utilized and ex
plained in greater detail, e.g., by Sliv (ref. 10) and by Boiir and Mottelson 
(ref. BM), the isospin 7’ of a state in a heavy nucleus is in many respects 
a very well-conserved quantity. Therefore we must ensure that the states 
which we find have good (T,T0'). (To is the third component of T).

As long as we only apply r = 0 excitation operators to the ground state, 
for which 

(3.17)

there is no problem: we reach a state with the same T, while r, v = 1,0 
operators may give rise to some mixture of T = 7\ and T = T1+l. The 
7\+l part of the excitation is contained in the isobaric analogue to an 
excitation of low energy in the neighbouring nucleus with 7’0 = — 7\ — 1. 
It has quite another structure than the 7\ states in the same energy region 
and is only mixed weakly with them (ref. 9).

To illustrate the relation to our calculation let us, for simplicity, assume 
sharp Fermi surfaces for protons and neutrons. Let e(F, zi) and e(F,p) be the 
Fermi energies for neutrons and protons, respectively. Let us consider a par
ticle-hole excitation for which the particle (i.e. a proton) is created in a state 
(ji, zzq) such that eQj, zzij) <c(F,zz) or the hole (i.e. a neutron hole) is created 
in a state (j2>m2) such that £(/2, m2)>e(F,p).
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In this case T_ acting on the state gives zero. We cannot further align 
the state in isospin space and, hence, T = 7\.

For our purpose this means that, for single-particle transitions inside 
partly filled shells and for part of the transitions from one shell to the next, 
there is no possibility for isospin impurities.

It should be stressed that this does not mean that the excitation is pure 
r = 0, since r = 1 and T = rI\ are able to couple to 7\.

For the transitions of higher energy, T is not automatically conserved. 
Let us consider a definite particle-hole excitation and let A+(r = 1, 
v = 0) create the particle-hole pair, coupled to (r = 1, v = 0; Â = 3,«). 
The resulting state with good quantum numbers (T, 7’0) = (7\, - 7\) is then 
formed by coupling of the ground state T = 7\ and t = 1 :

{^+(T _ 01^1 >}(2’1,1)T1,-T1

= < 10 7\ - 7\ I 7\ - 7\ > A+(t = 1, v = 0)| 1\ - 7\ > , (3.18)
+ < 1 — 1 7\ — 7\ + 1 | 7\ - 7\ > A+(r = 1, v = - 1 ) I 1\ - 7\ + 1 > J

The state is thus a superposition of an excitation, based on the ground state 
|7\-7’1>, and an excitation based on | 7\ — 7\+l), which is the isobaric 
analogue to the ground state. In the following we neglect the last part. 
The justification for this procedure is, partly, that for the stales of low energy 
which we are most interested in, the efTect should be very small and, partly, 
the assumption of 7\))1, which should be well satisfied, except for the 
lightest nuclei considered.

When the Fermi surface is smeared out, i.e. when our elementary modes 
are two-quasiparticle excitations instead of particle-hole excitations, the 
discussion which was given above contains a slight oversimplification. This 
is due to the fact that the quasiparticles do not have a definite z component 
of the isospin in the way we have defined them. Thus, the elementary modes 
involving the creation of a proton-neutron quasiparticle pair are mixtures 
of v = ± 1.

It shall finally be stressed that in general it is not allowed to treat the 
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coupling in isospin space between the vibration and the ground state of a 
heavy nucleus in the weak coupling limit. This means that it is not possible 
to consider the excitation operator as a definite entity, the isospin of which 
is coupled to that of the ground state by simple vector coupling, or which 
may be rotated in isospace without complications.

It is e.g. easy to find a (r = 1, v = 1) particle-hole excitation, for which 
the (r = 1, v = 0) partner gives zero when acting on the ground state of a 
heavy nucleus. This happens whenever the particle or the hole is placed in 
a level (j, m) which is occupied by neutrons but empty for the protons.

The isospin dependence of the long-range force

The isospin dependence of the long-range force is contained in the iso
vector component xx of which little information is available. It is expected 
to be negative (to have opposite sign of x0), since this will push the r = 1 
excitations upwards in energy, as is the case for the giant dipole. (For further 
details, see sect. 5). This means that therm and pp force should be somewhat 
weaker than the np force, or even have opposite sign, if x0< | |.

An estimate of the magnitude of may be obtained by assuming that 
the oscillating field has the same isospin dependence as the central nuclear 
field for which the dependence manifests itself, e.g., in the semi-empirical 
mass formula and in the real part of the optical potential (ref. 50). This gives

Xj/xo^-l/2. (3.21)

A similar result is obtained by assuming that the two-body force responsible 
for the interaction is approximately of Serber type. Such estimates have 
been discussed by Boiir and Mottelsen (ref. BM).

A determination of on the basis of a fit to the experimentally determined 
energies is not possible. This is analogous to the situation for quadrupole 
vibrations where even many more data are available (ref. KSII). This 
difficulty is caused by the fact that all the experimental information concerns 
the low-energy states, and for these the r = 1 part of the force has only 
little effect in comparison to the r = 0 part, and also compared to other 
parameters, as e.g. the single-particle energies which are not very well known. 
(We shall see below that a more detailed investigation of the 2-5 MeV part 
of the spectra, using inelastic scattering with different projectiles and compar
ing results for different states and for different nuclei, may be one of the best 
tools for determining xx, but still a large uncertainty is expected). On the 
other hand, we are able to obtain a fairly correct picture of the strong lines 
in the low-energy spectrum without detailed information on xx, and therefore 
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we have simply used an isospin independent octupole-octupole force in our 
general calculations in sect. 15.

By this choice the lines of t = 1 type are poorly determined but, as we 
shall see for Xy = — 0.5x0, there is no strong tendency to build up very 
great, individual r = 1 lines.

A discussion of the influence of Xy and some examples of spectra, cal
culated with = - O.5zo and Xy = — 2x0, are presented in sections 5 and 9. 
For the strong lines of low energy it is possible to give simple rules for the 
changes in energies and reduced transition probabilities resulting from a 
finite

4. Reduced transition probabilities

The coherence and isospin properties of the excitations can be described 
in terms of the matrix elements of the multipole operators M(r = 0; 2 = 3,/z) 
and J/(r = l,r; Z = 3,/z) which were given above ((3.15) and (3.16)).

In our treatment only the v = 0 component of 3/(r = 1) is relevant.
Taking the square of the reduced matrix element from the ground state 

to the state in question (labelled 3’, a), we obtain two new quantities, namely 
the reduced transition probabilities 

and

(4.2)

ordinary electric transition operatorIn the same way, the

(4-3)

(4-4)

(4-5)

By - Btt

- I<3

«0

gives rise to

If for an excitation By vanishes, we shall call it pure r = 0, whereas 
Bo = 0 for a pure r = 1 excitation.
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The expressions for Bo and can be obtained as special cases from the 
general formula for B. This has been calculated by KS II under certain 
conditions. Following their derivation it is easy to get a generalized expression

and S'? is the derivative of Sp with respect to ha), the energy of the excited 
state :

S'p

x

as*
d(h co) Z I ((£(J) + X/'))2 - (W)2

I
«/’) + £(/)) (</>(/) + </>(/))2 »

(4.8)

S'n being the analogous neutron quantity.
The quantities en and ep are the effective charges of neutrons and protons, 

respectively.
Since we are taking all single-particle transitions into account, the effec

tive charges for an E3 transition are the bare charges ep = e and en = 0. 
The expression for Bo, the r = 0 part of B, is obtained when using ep = en 
= 1/2 in (4.6) while Bx appears when ep = - en = 1/2.

The following relation applies to the three quantities

B - e2{[,B0 ± (4.9)

where the minus sign should be used if

(4.10)

which, due to the neutron excess, often is the case.
Mat.Fys.Medd.Dan.Vid.Selsk. 35, no. 1. 2
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If Xj = O (but x0 + 0) we obtain the simpler expressions

( Sp - Sw)2
4(S'P+ S'71)’

(4.11)

(4.12)

(4.13)

If x0 = 0 and 4= 0 we get the same formula for B, whereas the expres
sions for Bo and Bt are interchanged because of the sign in the numerator 
in the general formula (4.6). For an arbitrary x0, xx mixture the sign is 
sometimes positive, sometimes negative. For the strong states of low energy 
it is found to be positive in the calculations below.

Inelastic scattering

While B is connected to electromagnetic excitations, Bo and Br are the 
relevant quantities in inelastic nucleon scattering.

When a particle passes through the nucleus, its motion is changed by 
the nuclear field and it interacts with the nucleons in a complicated manner.

In a simplified picture we may assume, however, that inside the nucleus 
the nucleons in a projectile interact with the nuclear field in very much 
the same way as the other nucleons do, and thus that the interaction essenti
ally is of the form

2 {V,8 *%(./*)  M*  = 0; x = 3,//)
+ 2xi2r?y3/J)/*M(T = A = 3,/z)}, j C4-14) 

where we sum over the nucleons./ in the projectile. The r = 1, v = ± 1 terms 
govern the charge exchange reactions considered below. For inelastic scat
tering without charge exchange the reduced transition probability will be 
proportional to

„?2f0(j)\2
xo |/^o ± xi ~ j (4-13)

or
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(4.16)

where
Bi
Bo

(4.17)

and k is the number of nucleons in the projectile. The plus sign should be 
used if Bo<B and the minus sign if B0>B. We note that we here have utilized 
the assumption of the simple isospin dependence of the interaction (4.14), 
whereas the precise dependence on the radial coordinate of the projectile 
nucleons is of minor importance.

Here, as in the following, we neglect the electromagnetic part of the 
excitation when we consider inelastic nucleon scattering.

the projectile contains only one kind of nucleons, i.e. when k = 1. If the 
projectile contains both protons and neutrons, the Bx part is somewhat 
washed away, and (4.16) comes closer to BQ.

The expression is simplified if either the total isospin of the projectile is 
zero, as for a-particles and deuterons, or if the relevant nuclear field with 
which it interacts is isospin independent (xx = 0). Then we get Bo. This 
means that we are exciting just the r = 0 part of the vibration.

If the excitation is either pure t = 0 or t = 1, only one of the terms sur
vives, but in practice this situation is never reached (cf. sections 7 and 9).

One of the more interesting features in the expression is the interference 
between the two terms. Even when the state is fairly pure in r character, 
i.e. BoyyBr or BX>)BO, this interference gives rise to considerable variations 
in the relative cross sections, using projectiles with different isospin (cf. 
sect. 11).

Since the experimental material contains mainly measurements of B, 
and since the underlying theory for electromagnetic processes is more reliable 
than the theory of direct reactions, we will preferably discuss this quantity. 
However, we note that inelastic scattering, using different particles, may give 
in the future most valuable information on the structure of the excitations.

Charge exchange scattering

In the preceding section, we have discussed the inelastic processes con
nected to r = 0 and r = 1, v = 0 excitations. Now, whereas the r = 0 part

2*
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of the interaction only gives rise to scattering, the r = 1 part may flip the 
isospin of an incoming nucleon, i.e. give rise to charge exchange reactions, 
involving excitations of r = 1, v = ±1 character. Let us consider a (p,n) 
process.

We use again the simplified expression (4.14) for the interaction between 
the incoming particle and the nucleus. For the t = 1 part the ratio between the 
nuclear matrix elements for isospin flip to non-isospin flip of the nucleon is 
given by

<7\-7) + l,ß|J/(r =1, v = l)\7\-7\)
- 1, r - 0)|7\ - 7’1>

<r1-r1ii|r1-T1+i><r1iiM(T- i>||7\> |

I T1-T1+l,/5> being a state in an odd-odd nucleus which is the isobaric 
analogue to the vibration \ 7\, ß) in the target. Thus, by studying the
relative probabilities for exciting low-energy stales in the target and ana
logues in the odd-odd nucleus by protons we are able to learn something 
about the isospin dependence in the interaction between projectile and target.

Scattering via isobaric analogues and stripping

Without going into details we shall briefly sketch how we can obtain 
information on the structure of the octupole vibrations from stripping ex
periments and from inelastic proton scattering via isobaric analogue states 
(states with T - 7)). For the sake of simplicity we only consider the last 
type of experiments. The generalization to stripping is straightforward.

When bombarding a nucleus, say (A\, Zß) which has (7', 7’0) = (7\,~ Tß), 
with protons, we are able to form various states |A\, Z^ + ßß) with (7’, 7)) 
= (711+|,-711+|) in the compound nucleus (Ay, Zx + 1), which are isobaric 
analogues to states | A\ + 1 ,Zlfß > with (7’, 7’0) = (7\ +|, - 7\ -|) of low 
excitation energy in the nucleus (N,Z) = (A\+l, Zß). The reaction ampli
tude for the entrance channel is proportional to

<Ay,Z± + l,ß\a+ (proton) | Ay,Zlt ground state) 
in analogy to

< Ay + 1, Zx,ß I (neutron) | A\,Zlt ground stale), 

(4.19)

(4.20)
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the square of which is a spectroscopic factor for a (d,p) process leading 
from the target ground state to the low excited state ß in the nucleus (A7,Z) 
= (A\+l,Zß). Now, the compound state may decay by proton emission to 
some state in the target. In the decay the amplitude is determined by

{N1,Z1, y I a (proton) \N1,Z1+ l,ß~), (4.21)

which (if ß is not the analogue to the ground state) corresponds to a pick-up 
spectroscopic factor for neutron pick-up from an excited state in the target 
(A\ + l,Zr) to a state y in the final nucleus (Ar1,Z1).

One possibility of learning something about the structure of the octupole 
oscillations is thus to bombard an even Z odd N target with protons to form 
a 3~ isobaric analogue state in lhe compound nucleus. When this state 
decays through the different proton channels, this “pick-up” process 
provides information on the occupation of the different single-particle states 
in the 3~ oscillation.

As a simplified example, let the final state in the target be a single 
quasiparticle (J', m') + a quasiparticle vacuum, which is assumed to be the 
same as that in the compound nucleus, and let the emitted proton have 
quantum numbers j, m. The channel state is

= ±)x+(j',ni,t'o = - |) | 3/z > 10 > (4.22)
m 
m'

and the decaying state is the isobaric analogue to

B+(3,/z,a)|0' > (4.23)

(a one-phonon state with z = 3, //). By | 0 > and ]()'> we denote the rele
vant phonon vacua. The overlap is

~ u(j,m)p(aj,j'), (4.24)

where p(x,j,j') is the amplitude for the /,/' two-quasiparticle excitation in 
the oscillation a.

When obtaining this result we have neglected the overall reduction factor 
2 T + 1 which appears in the transition probability for proton decay of an 
isobaric analogue state. This factor is easily understood, since we imagine 
that the isobaric analogue state can be formed by applying the isospin raising 
operator T+ to the low-energy state in the (A7 + 1 , Z) nucleus, i.e. by trans
forming a neutron into a proton. However, there are 2 T + 1 excess neutrons 
which can be transformed. Thus, the particle with quantum numbers /, m only 
has the probability (2T + I)-1 of having t0 = 1/2 in the decaying analogue state.
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Another possibility to learn something about the structure of the 
octupole oscillations is to study inelastic proton scattering from an even-even 
target via an isobaric analogue state in the compound system to a 3 " oscilla
tion in the target. In a naive approach we think of using preferably isobaric 
states which are known (or expected) only to contain to a very small amount 
a component of a single particle coupled to a 3“ state. In a decay of the 
analogue state in which a proton is emitted, leaving a hole together with 
the “last odd particle’’, we may thus directly gain information on the 
probability that the target 3“ state contains just this specific particle-hole 
component.

Let us therefore assume, for simplicity, that the compound state is just 
the analogue to a single quasiparticle + a quasiparticle vacuum, which is the 
same as for the target. Let again j,m be the quantum numbers for the 
emitted particle and m' those for the odd nucleon.

The channel state is

2«+(.Åm>/o = l)B+(3,,w, a)<jm3/z > (4.25)
m,/i

and the decaying state the isobaric analogue to

— tx+(j',in,t'o = -|)|0' >. (4.26)
The overlap is

- «) |/ ■ (4.27)

Again a reduction factor (27’+ l)"1 is introduced in the decay probability, 
when the isospin structure of the states is taken into account.

The major difference between the quadrupole and the octupole vibra
tions is that, whereas the first ones are in general built up by many two- 
quasiparticle excitations of roughly the same energy and thus with amplitudes 
of comparable magnitude, the octupoles are often (cf. sect. 12) formed by 
some few unperturbed modes. For these modes the amplitudes are rather 
large (of the order of magnitude of unity) and thus more easy to measure.

Sum rules

In the analysis of transition strengths for multipole excitations the sum 
rides for reduced transition probabilities play a significant role.

The energy weighted sum of Ii values is given by the formula (ref. BM).
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/
(4.28)

In the first sum we start from a state i, e.g. the ground state, and sum 
over all states /', which can be reached by an E3 excitation. Ef and Ei are 
the two relevant energies. The last sum runs over all protons p.

From the derivation one immediately generalizes to get the corresponding 
sums for Bo and Bx for the excitations from the ground state:

£(£;*- £0)B(r - 0; 0 -> 3-,«)
a

- S(E« - W’ - 1, » - 0; 0 -> 3 -,<x)
a (4-29)

Here, p denotes protons, n neutrons. The index a runs over all available 
3_ states in the nucleus. The expectation values of r4 should be evaluated 
in the ground state. These expressions are slightly model dependent. In the 
derivation it is supposed that the multipole operator and the Hamiltonian 
commute, except for the kinetic energy part. This implies that the shell
model potential is velocity independent and that it is permissible to neglect 
exchange effects. This is consistent with our approximations when we only 
consider the v = 0 excitations. Then we may use an octupole-octupole force 
which contains only the factor

z0 + 4xx /0(z) t0(j) (4.30)

which commutes with M(r = 1, r = 0) as well as with 3/(r = 0).
The single contributions to the sums ((4.28) and (4.29)) and the total 

sums we call oscillator strengths and total oscillator strengths, respectively. 
If the protons and neutrons contribute with equal amounts to the sums, 
then the total B oscillator strength is twice the Bo strength.

Due to the neutron excess, the contribution from the neutrons is actually 
often twice as high as that from the protons, which means that the total B 
strength is 4/3 of the Bo strength. This is partly due to an oversimplification 
in our treatment, because we use the same frequency in the harmonic 
oscillator potential for protons and neutrons. Thus, the protons are kept 
closer to the nuclear centre, and is t°° small. A better treatment

p
would be to use, e.g., Saxon-Wood potentials for protons and neutrons.
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When making the transformation from the unperturbed two-quasiparticle 
excitations to the resulting excitations, the total oscillator strengths are un
changed. This is a purely mathematical statement.

Thus the magnitude of the total B,B0 and B} strengths may be calculated, 
e.g., in a simple model of non-interacting particles in a pure harmonic 
oscillator potential.

When using a model in which the levels closest to the Fermi energy z 
are chosen empirically, as we do below, we introduce an element of incon
sistency, due to the fact that we are not sure that these levels can be calculated 
with the help of any velocity independent potential. It is also immediately 
seen that, when pushing levels around in a somewhat arbitrary way, the 
total oscillator strengths cannot be expected to be constant. Since, however, 
this pushing concerns mainly levels near the Fermi level and some of them 
move up and others move down, the effect is actually very small (at most 
some few percent).

Sometimes the so-called isospin zero part of the total B oscillator strength 
is considered (ref. 11). This quantity is Z/A limes the total strength and in 
our treatment it has not any very distinct meaning.

5. Octupole coupling in simple examples

Before discussing the spectra of real nuclei it may be instructive to con
sider the simple case of one proton line and one neutron line coupled by 
the octupole force.

To obtain a measure for the strength of the excitations it is convenient 
to define

FV = |Sl </2ÅI I U1Å> |2(«O’l)Kj2) + KJlXA))2 (5.1) 
kk \a/

summing over all the proton states and j2. The analogous neutron quantity 
is Fn. The factor | is chosen because each term in the sum appears twice.

When the two lines are of equal energy and strength (F? = Fw) the resulting 
spectrum consists of a pure r = 0 mode and a pure r = 1 mode. For the 
first one, energy and strength are determined only by x0, the r = 0 part 
of the force, and for the second one only by Xj (fig. 1).

When F? 4= Fn, but the two lines remain in the same position, the resul
ting modes become of mixed isospin character, but still the low-energy mode
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Fig. 1. Position of the two resulting lines for constant z0 and different values of x19 when the 
unperturbed spectrum consists of a protron line Fp = 50, and a neutron line Fn = 50, both 
placed at 1 MeV. The line of lowest energy is independent af B, Bo and Br are given in 

arbitrary units, obtained when a = 1 (cf. equation (4.6)).

is mainly r = 0, determined by x0, and the high-energy mode mainly r = 1, 
determined by Xj (fig. 2). This is correct, even if there is rather strong 
asymmetry in the unperturbed spectrum.

When x0 is constant and - increases, the low state becomes purer 
with respect to isospin. This may be considered in two ways.

1) When xx is introduced, it sucks some of the r = 1 part from the low 
excitation, which then becomes purer. Thus decreases while B and 
Bo approach each other.

2) When is introduced, xn and xp are diminished whereas the proton
neutron force becomes stronger. If, e.g., the state is preferably built 
up by neutron excitations (Fn)Fp), they lose influence and more 
proton excitations are mixed in. Thus, B increases while Bo decreases. 
(The strong component of the excitation is weakened).

It is interesting to note that even when Xi = - 2x0 (the nn and pp forces are 
repulsive) there is a low-energy collective state. The reason is, that now xnp = 
3x0, i.e. the neutron-proton force is strongly attractive. For the high-lying mode 
the energy goes up when - Xj and thus xnp increases, since it becomes mort; 
difficult to separate neutrons from protons. From the sum rules it follows 
immediately that when Fp + Fn the two resulting modes cannot at the
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Fig. 2. Spectra for constant x0 and different values of when the unperturbed spectrum is 
Fp = 40 in 1 MeV and Fn = 60 in 1 MeV. Again a = 1 (see fig. 1).

When xx = — 0.5 times the x0 value from the figure, but x0 = 0, a line with B = Bo = 24, 
Bt = 0 appears in 1 MeV and another one with B = 14.1, Bo = 0.9 and = 22.1 in 1.14 MeV.

same time be of pure isospin type. When is introduced, the low-energy 
mode becomes of r ~ 0 type, but then the high-energy mode must be of 
mixed isospin character, i.e. Bo 4= 0.

Let us now proceed to the other possibility for asymmetry in the unper
turbed spectrum, viz. the case where Fn = Fp but the two lines have different 
energies (fig. 3). The variations in B are easily understood, when it is 
remembered that if is introduced, e.g. more of the high-energy unperturbed 
mode is mixed into the resulting state of lowest energy. It is obvious that 
when the forces are so strong that the distance between the two resulting
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Fig. 3. Spectra for constant x0 and different values of xx, when the unperturbed spectrum is 
Fp = 50 in 1 MeV and Fn = 50 in 1.5 MeV. When Fp and Fn are interchanged, B gets the 
values indicated by dashed lines, while Bo and Bt are unaffected. Again a = 1 (see fig. 1).

modes is much greater than the distance between the unperturbed lines, 
we are again close to the symmetric case of fig. 1, but we learn that the 
situation with rather pure modes is reached much earlier.

6. Effects of shell structure

In order to obtain qualitative insight into the manner in which the shell 
structure affects the resulting spectrum we shall in this section, in some 
simple examples, study the energy distribution of B oscillator strength, 
using an isospin independent octupole force.

Let us first consider a system of non-interacting particles in a pure 
harmonic oscillator potential.

By 3“ excitations a particle can be raised either one or three shells, 
giving one group of excitations at an energy hw0 and another one at 3/ico0.
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To find the oscillator strength distribution on these two groups we define, 
for the proton excitations (cf. (5.1))

< kJz I I y3 (7) Ï3 I 1 hjl > I2(u(j‘l) "(./2) + “(jz))2’ (6-1 )

^2=2 2 l<W2ll ^(7) l'3IIGA>l2(«Gi)y(j2)+ ^å)u(å))2, (ß-2)

J7V = 3 \r /

where A N is the change in principal quantum number from jr to j2.
Analogous quantities Ff and F% are defined for neutrons. Apart from 

a trivial factor, 77f is simply the sum of the 13 values for all the transitions 
to the states of excitation energy ha)0, i.e.

2 B(E3; 0 ->3-, a) = e2o6Ff.
a(JAr = 1)

(6.3)

It is easy to calculate Ff, and F£ can then be found from the energy weighted 
sum of B values (4.28).

For the lightest nuclei Ff = 0, since a 37zco0 transition is needed to 
form a 3“ state. In the limit of very heavy nuclei Ff — Ff.

For Z = 20 we get Ff/F$ = 70 °/0, for Z = 40 we obtain 76°/0 and for 
Z = 70 the ratio is 82°/0. This means that in a very large Z interval the sum 
of B values for excitations of energy ha)0 is approximately 3/4 of the sum 
of B values for 37zca0 excitations. The A AT = 1 excitations contribute about 
2O°/o to the total B oscillator strength.

When we introduce an isospin-independent octupole-octupole force 
between the nucleons, the neutron and proton excitations at 7zco0 couple 
and give an unshifted line at hw0 and a line with lower energy, as ex
plained in the preceding section (cf. fig. 1). The same is the case for the 
neutron and proton excitations at 31ïa>0, and finally there is a coupling 
between the lines in the two energy regions. This is illustrated by fig. 4. 
The x value is taken from the detailed calculation below, where it is fitted 
by the experimental data. We see that the introduction of the octupole force 
does not push the lines very far down, and the oscillator strength, placed 
on the low lines, is almost unchanged. This result is, however, very sensitive 
to the strength of the octupole force. If x is increased by about 35°/0, the 
low line comes down to zero energy, i.e. the spherical shape becomes un
stable in this model.
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Fig. 4. Resulting spectrum for a simple model of the nucleus A,Z = 90,40, when = 0 and 
x0 4= 0. The unperturbed lines are dashed, the resulting ones fully drawn. The proton and neutron 
lines are denoted by p and n, respectively. The unperturbed lines are concentrated in ha>0 (= 9.15 
MeV) for d N = 1 and in 3ha)0 for A N = 3, and they are represented by their strength F, intro- 

(Sp)2duced in the text ((5.1) and (6.1)). For the resulting states F = where S' = S p + S n. The 

value for x0 has been taken from the detailed calculation (sect. 15). If S is 35% smaller, i.e. 
if x0 is 35°/0 greater, the spherical shape becomes unstable. In the unperturbed spectrum the 
A N = 1 lines contribute with 20% to the total B oscillator strength. The two resulting lines of 
lowest energy contribute with 21 •5%, the lowest one alone with 9.5 %.

The spectrum is independent of the atom number A under the following conditions : 1) The 
slow change in the ratio F^lF% with A is neglected, 2) The ratio between neutrons and protons 
is kept constant, 3) The coupling constant x varies like A-2. This x variation was suggested in 

section 2 by a simple scaling argument.

The deviation of the actual central nuclear field from that of a harmonic 
oscillator has important effects on the octupole spectra. Thus, the broadening 
of the shells leads to a smearing out of the oscillator strengths in the h co0 
and the 3fico0 regions.

Of special significance for the low-energy spectra is the spin-orbit split
ting which pushes levels down to the shells below. This means that inside 
the partly filled shell there are transitions (a weak and a strong one, de
pending on whether spin flip is involved or not) the energies of which are 
prevented from going to zero essentially only by the pairing gap. The effect 
begins to be of importance with the 4<y9/2 level around A = 80. It is illu
strated by a simple model in fig. 5. For the first excited state S(= S^ + S71) 
and thus the energy is largely determined by the low-energy unperturbed 
line, but B receives very substantial contributions from the higher fines.

For a more detailed study of the effect of the spread in the single-particle 
spectrum we go on to fig. 6. In fig. 6a all the low-energy single-particle
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Fig. 5. Illustration of the influence of the strong transition inside the partly filled shell to the 
lowest resulting line for the nucleus A,Z = 90,40. The strengths F? and F% are placed in ha>0 
and 3fito0, respectively, with the exception that the strong 3p3/2-4g9/2 line is placed at the 
expected position 3.27 MeV — l/3/icoo (shown by dashed lines). The situation here is especially 
favourable to the low energy transition, since for this one the u v factor in the numerator in 
S is almost equal to unity. (The transition goes from an almost filled to an almost empty level).

In the detailed calculation (sect. 15), the collective mode of lowest energy occurs at 2.61 
MeV (shown by an arrow). If we use this energy in the model, Sf = 434 and Sf = 90. 
The contribution to Sp from the lowest-lying unperturbed line is 254. We can illustrate 
the influence of the higher-lying unperturbed lines on B in the following way. Let us first 
calculate B by taking only and S p from the transition of lowest energy into account, 
subsequently by including all the J N = 1 lines, and finally by also including the /I .V = 3 lines 
(keeping E fixed). In this case, the ratio of B values is 1 : 2.9 : 4.2. In the detailed calculation 
S'f = 537, which is more than found above, because of the influence of the broadening of the 
shells. The quantity Sf should be changed less. Using the value from above, Sf/Sf ~ 90/537 ~ 

17°/0, which should be a reasonable value.

transitions are placed as in a preliminary calculation, roughly equal to that 
in sect. 15. All the high-energy transitions are placed at 3/1 co0. As a standard 
nucleus Sn116 is chosen.

Fig. 6b shows the picture when the octupole force is introduced. In the 
low-energy region two strong lines appear, one governed primarily by the 
transitions inside partly filled shells, and another one by the transitions 
between neighbouring shells. From table 1 it appears that these two lines 
contain about 10°/0 of the total B oscillator strength, i.e. the same amount 
as the line of the lowest energy in the simple harmonic oscillator picture 
in fig. 4.

In the medium region around hco0 many weak lines show up. In total 
they contain 23 °/0 of the B oscillator strength, which is 5°/0 more than when 
x0 = 0.
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Fig. 6. Histogram of the energy distribution of B values for Snlle.
a) The unperturbed spectrum with the proton lines fully drawn and the neutron ones dashed. 

The d N = 3 levels are concentrated in 3ha)0. The position of the A N = 1 levels comes from 
a preliminary calculation and is somewhat different from the values used in section 15. 
The B value in a) is calculated with an effective charge e on all nucleons.

b) The spectrum when the isospin independent octupole force is introduced (S = 0.578 x A3'3, 
which corresponds closely to = 0.45 x A313 used below). For the medium region around 
h(joo, histograms of Bo and Br are inserted. For the strong lines above and below this energy 
region, Bo and Bt are written above the lines. Bx and Bo are in units of IO-74 cm8.
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Fig. 6. Histogram of the energy distribution of B values for Snw.
c) B, Bo and B1 for xr = — half the x0 value from b) and x0 = 0.
d) The spectrum in the 3/ico0 region when F2 is smeared out between 2.5 ha>0 and 3.5 hco0 and 

x0 is the same as in b). (For computational reasons the region of proton F2 lines is pushed 
down 0.2 MeV compared to the neutron F2 region).

e) The change from d), when xx like in c) and x0 = 0.
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Fig. 6 g.
Fig. 6. Histogram of the energy distribution of B values for Sn118.

f) The change from d), when x0 = 0 and xx four times stronger than in c).
g) Histograms of B, Bo and Bt when x0 has the same value as in b) and = —0.5 x0. The un

perturbed spectrum is for the same as in a) and for F2 the same as in d).

Finally, we get two high-energy, strong lines. They are not realistic but 
appear because of the concentration of the F2 transitions at 3/iw0.

To get some insight into the way in which smearing out of the 3ha>0 
transitions affects the picture we consider a crude model, the main results 
of which are shown in figs. 6d, e and f (figs. 6e and 6/’ are discussed in 
sect. 8). The unperturbed 3/ico0 lines are distributed with constant density 
between 2.5hco0 and 3.5/ico0. This change in the model from above affects 
the lines only slightly in the ha0 domain, and therefore they are not shown.

Mat.Fys.Medd.Dan.Vid.Selsk. 35, no. 1. 3
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Table 1. Contributions (here called relative oscillator strengths) to the energy-weighted sum of 
B, Ba and Br for the two low-lying strong levels in the resulting spectrum of Sn116 from the 
model of fig. 6 and for the two high-lying levels which occur when B2 is concentrated at 3 ha>0.

The data are given for a pure x0 force (denoted x0) (the force from fig. 6 b), for a mixed 
force with same x0 and = —0.5 x0 (denoted + (the force from fig. 6 g), for this value
of Xj and x0 = 0 (denoted xx) (force from fig. 6 c), and for Xj^ four times greater and still x0 = 0 
(denoted 4xj). Finally, “none” means the sum fractions from the unperturbed spectrum, i.e. 

when x0 = Xj = 0.

levels force rel. B
osc. str.

rel. Bo 
osc. str.

rel. 
osc. str.

two low-energy strong «0 70/' /o 17°/1 ' io 1 Io

levels XO + X1 8°/o 17°/0 1/ 0/12 l0

*0 67°/0 64% 800/o
Xi 72°/0 8O«/o 83«/0

two high-energy levels 4xt 77°/ ' ' /o 79o/o 91 %
X0+«i 670/0 640/0 83o/o
none 72«/0 790/0 79o/o

As was to be expected, the oscillator strength is pushed somewhat to 
the low-energy end of the region, where stronger lines are built up, while 
a great part is left as a rather constant background (fig. 6d).

We note that the force is not able to form a very strong line in the gap 
between and F2. This is partly due to a cancellation effect; the contribu
tions to S from I1\ and F2 have opposite signs. Attempts to press a greater 
part of the oscillator strength down from the 37ico0 region does not result 
in the formation of a strong line in the gap, but makes the strength go further 
down to the 7ico0 region. If only the 37t<z)0 unperturbed lines are included 
in the Sn spectrum, the x0 value from fig. 6d is just strong enough to place 
the resulting state of lowest energy at the edge of the F2 region. When x0 
is made twice as large, the state comes down from 20.6l MeV to I 7.95 MeV 
and the contribution to the total B oscillator strength increases from 2l °/0 
to 32 °/0. If x0 is once more multiplied by two, we are very near unstability 
of the spherical shape of this fictive nucleus. The state appears al 7.63 MeV, 
but only contains 38°/0 of the B oscillator strength and 62 °/0 are still left 
in the 37iw0 region.

From the discussion above we expect the spectrum in a nucleus to 
consist of some few, strong lines of low energy (2-5 MeV) and many weak 
ones distributed rather uniformly in the 7ico0 and 37ioj0 regions.

When going from nucleus to nucleus the qualitative picture of the spec-
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Fig. 7. The B values in the low-energy spectrum in A,Z = 208,82. Resulting lines fully drawn, 
unperturbed dashed, p and n denote proton and neutron two-quasiparticle excitations, respec
tively. The B values in the unperturbed spectrum are calculated by giving all particles effective 
charge e. Note that the proton lines of highest energy indicate the start of the “continuum” 
of states in the ha>0 region.

The single-particle levels come from a preliminary calculation, using the same neutron 
levels as in case 9 a and KSII proton levels (cf. sect. 15):

#7/2:0, d5,2:0.8, 7t11/2:2.1, d3/2 : 2.6 and s1/2 2.95 MeV. In this calculation c0 = 0.413.

trum in these two regions should vary rather slowly, the variations being 
essentially brought about by the changes in intershell distances and the 
broadening of the shells.

The low-energy, strong states are expected to vary much more quickly 
in position and B value, since they are very dependent on the energy and 
the number of particles available for the transitions inside the partly filled 
shells. This is the reason why we concentrate on this part of the spectrum 
in the detailed investigation below.

The fine structure in the low-energy part of the unperturbed spectrum 
has a strong influence on the distribution of the oscillator strength among 
the very lowest-lying resulting states. We shall give some characteristic 
examples in concluding this survey of the qualitative features of the spectrum. 
The examples are chosen from the numerical calculation in sect. 15.

The general, well-known trend is that the level of lowest energy has a
3*
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Fig. 8. The B values in the low-energy spectrum 
notation as

---------- resulting states

----------two quasi particle 
states

in A,Z = 142,60 (case 8a in section 15). Same 
in fig. 7.

small S' = S'p + Sn and thus a great 13, whereas the opposite is true for the 
following ones.

An example is given by the double magic Pb20S, for which the lowest 
part of the spectrum is shown in fig. 7. In this and the following figures only 
the 6 — 10 lowest states are included. It should be kept in mind that the 
unperturbed lines of greatest energy in the ligures are just the lowest ones 
of the numerous states forming almost a continuum up to 10-15 MeV, as 
shown in fig. 6.

For a non-magic nucleus the single-particle transitions inside partly 
filled shells in general all have energies well below the intershell transitions. 
This gives rise to a gap in which a collective state may appear, and thus the 
oscillator strength in the low-energy part of the resulting spectrum is in 
general split into two or more parts. Figs. 8 and 9 refer to a neutron-magic 
and a non-magic nucleus.

A special line structure effect in the very lowest end of the spectrum 
is seen when the lowest unperturbed transition is weak (due to the uu factor 
or because spin flip is involved). This is illustrated by fig. 10.

Table 2 gives the contributions to the total 13 and 130 oscillator strengths 
for the lowest stales. We see that the strength in the low part of the spec-
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Fig. 9. The B values in A,Z = 148,60 (case 8 a in sect. 15). Same notation as in fig. 7.

trum, is fairly constant, although it may be distributed in different ways 
among the lowest states. In A,Z = 142,60 the lowest level is moderately 
collective (closed neutron shell) and in A,Z = 148,60 it is very collective. 
(We note that the increase in B and decrease in E just compensate each 
other).

For the next nucleus in the table the lowest state is especially weak, 
while for A,Z = 90,40 the collective state is fairly high in energy and largely 
governed by the strong proton transition across the closed Z = 40 subshell. 
This gives rise to an especially great contribution to the B strength.

7. Examples of the isospin structure of the excited states

In this section we shall give examples of the isospin structure, i.e. the 
relative magnitude of B, Bo and Blf for the excited states which we find 
below, using the x0 force. To start with the strong low-energy lines we see
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Fig. 10. The B values in A,Z = 132,54 (case 7b in section 15). Same notation as in fig. 7.

from tables 3 and 4 that Bo is of the order of or greater than B, and 
This means that the lines, as was to be expected, are fairly pure t = 0. 
This is the case even for single closed shell nuclei, where you might expect 
a greater r = 1 mixing.

The tables teach us further that even small r = 1 impurities are able 
to change the ratio of Bo to B so that it differs considerably from unity. 
Because of the neutron excess, Sn for the lowest level is in general greater 
than Sp, and thus Bo > B. Since for this level Bo is never much smaller than 
B, it follows from the considerations in section 4 that it contains a greater 
part of the 7?0 oscillator strength than of the B strength (see also table 2).

The levels in the Iim0 region (fig. 6 b), which although individually weak 
contain in total an appreciable part of the B oscillator strength, are very 
often of mixed r = 0 and r = 1 type (Bo ~ Bx). However, r is less sig
nificant here. In the 37ico0 region of fig. 6 b we get a rather pure r = 0 
state and a pure r = 1 state, due to the fact that we have concentrated 
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Table 2. Row I gives for some nuclei the relative contribution to the total B oscillator strength 
from the resulting level of lowest energy, and row II the contributions from the five states of 
low’est energy.

Rows III and IV give the same quantities for the B„ strength.
The contributions to the Bx strength are always very small.

A,Z

I.....................................
II  

Ill  
IV

142,60 148,60
case 8 a case8a

2.5»/0 2.5°/„
6 °/o 5.5o/o
5 °/0 8 °/o

16 °/0 16 °/0

132,54 90,40
case 7 b case 3

Table 3. E (in MeV), B (in e2 101 f6), Bo and Bx (in 104 fR) for all the lowest lying resulting states 
for some nuclei, when a pure isospin-independent force is used. The data come from the general 
calculation in sect. 15, with the exception that for A,Z = 120,50 the proton transition 4<79/2 - 57i11/2 

was placed 0.8 MeV higher.

E
A,Z = 90,40

E
A,Z = 120,50

B B0 B1 B Bo B,

2.61 8.4 6.3 0.2 2.51 7.0 21 3.6
3.77 0.4 0.4 io-6 3.31 5 x IO-2 0.1 io-2
4.23 1.7 2.2 0.04 4.48 6.2 7.6 8 x IO’2
4.73 0.2 0.4 0.07 5.14 0.1 4 x IO“2 io-2
4.80 0.5 0.2 0.07 5.29 2.4 0.4 0.8
5.07 7 x IO“3 0.8 0.7 5.65 5 x IO-2 0.2 5x IO“2

E
A,Z = 142,60

Bx
A,Z = 148,60

B Bo E B Bo Bx

1.92 15 16 3 x 10~2 1.36 21 46 4.8
2.65 0.4 0.5 9 x IO-3 2.41 0.9 0.4 2.6
3.77 6.6 20 3.4 2.67 0.4 2 x IO-2 0.2
4.44 0.6 0.5 io-2 3.83 0.2 0.6 0.1
4.70 1.9 5 x 10-2 1.3 4.30 8.8 12 0.2
5.12 3 x 10-3 1.5 1.6 5.18 io-2 4.2 3.8
5.56 0.8 3.2 0.7 5.35 0.1 1.7 1.0

5.58 io-2 5xl0-2 io-2
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Table 4. BJBo for the two strongest lines in the low-energy spectrum of some nuclei from case 
8 a (see detailed calculation in sect. 15).

A,Z 138,56 140,58 142,58 142,60 144,60 146,60 148,60

lowest level.................
next, strong level . . .

0.03
0.18

0.01
0.17

0.10
0.10

0.002
0.17

0.04
0.10

0.08
0.04

0.10
0.02

all the 37lco0 transition stre 
In a real case we would

ngth on 
expect

a single neutron 
the 3hœ0 region

and a single proton line, 
to look somewhat like

the hco0 one.
If F2 is smeared out in the same way as in tig. 6d, a rather strong r = 0 

state is formed at the low end and Bo falls off when we go upwards, whereas 
Iix is constant in the region. This result is, however, dependent on the model. 
Variations in the relative and absolute density of neutron and proton states 
may influence the picture considerably.

8. The possible existence of strong r ~ 1 lines

As seen in sect. 5, we can in the case in which we use an isospin inde
pendent force primarily expect to treat the t — 0 states correctly while the 
x — 1 states are mainly determined by the magnitude of xx. To gel information 
on the distribution of the oscillator strength and the possible existence 
of strong t — 1 states we therefore, in this section, study the spectrum of 
our standard nucleus Sn116 (fig. 6) when a pure xx force is used.

When F2 is concentrated in 3ha>0, a strong r ~ 1 line and a r = 0 
line are formed in the high-energy end of the spectrum (fig. 6c). If xx is 
made four times stronger, the line of highest energy appears at 30.68 MeV 
with (B, Bo, Bx) = (8.3, 0.6, 13.2). The influence of the Zl N = 1 lines is 
very small. If they were left out, the x = 0 line would be unchanged, the 
t — 1 line would be 10 — 15 °/0 weaker. The oscillator strengths from table 1 
show the expected variations. If the 3/ico0 lines are smeared out between 
2.57ico0 and 3.5hœ0 the oscillator strengths are practically unchanged, but 
the tendency to forming a distinct high-lying r — 1 state is considerably 
weakened, as seen from figs. 6, e and f, especially if = -O.5xo.

Of particular interest is the problem whether strong x — 1 lines could 
be expected in the lower energy part of the spectrum. It is striking that 
in the present model no such lines appear in the gap between the Zl Ar = 1 
and the Zl N = 3 excitations, not even when = — 2x0. This is due to 
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the same cancellation elïect as considered in sect. 6 in connection with the 
investigation of the possible existence of slates in the gap below the 37iœ0 
region (for pure x0 force), but the effect is even stronger here, since the 
density of the oscillator strength in the high-energy end of the unperturbed 
spectrum in the hco0 region is small, i.e. the levels are weaker and are more 
widely spread. We will study this point again below, using a + force.

In the hco0 region many weak states, often of mixed isospin character, 
appear and even in the lowest part, where the nuclei show more individual 
trends, a study of some nuclei of different types has revealed no tendency 
to formation of stronger r = 1 states. We are led to conclude that, with 
the models and values which we have used, there is no pronounced 
tendency towards building up individual very strong r = 1 levels. Even 
in the A N = 3 region the Bx oscillator strength is expected to be smeared 
out over a broad energy interval, unless Xy is very strong.

As mentioned above, the interaction matrix elements for the AN = 3 
transitions are less reliable than for A N = 1, and this may give rise to modi
fications.

9. Modifications in the spectra, when =t= 0 is introduced

On the basis of the discussion of the simple examples in section 5 and 
the cases of pure x0 and pure Xj force (sects. 6 and 8) it is easy to understand 
the qualitative effects of an octupole coupling which contains both isoscalar 
and isovector components. An example is given in fig. 6g.

In the 37Î œ0 region of the spectrum the Bo oscillator strength is pushed 
downwards, Bx upwards.

A concentration of B, coming from r — 0 levels is formed in the low 
energy end and a concentration of B, coming from t — 1 levels is formed 
at the high end. However, the tendency for forming a distinct, high-lying 
T — 1 line is only weak. When = -2x0, this is no longer correct. A line 
with B = 7.74, Bx = 10.72 (same units as in fig. 6) is formed at 31.95 MeV, 
containing 32 °/0 of the total B oscillator strength and 7 7 °/0 of the Bx strength. 
This is rather near to the results for a pure xr force. We note that this con
centration is only reached when we use a Xj value, which is very large 
compared to the tentative theroretical estimates. Table 1 gives relative oscil
lator strengths for different xx values in a spectrum in which F2 is con
centrated in 371 <o0. If F2 is smeared out, the figures for B, Bo and B1 are 
practically unchanged in the 37tco0 region.
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Table 5. E, B and _B0 for some selected resulting states as discussed in the text. Units as in 
table 3. The data are given for pure x0 force, for x0 + x1; where xx = — 4x0, and for x0 i xt force 
with xr = — 2x 0. The magnitude of x0 is the same in all three cases.

The results for Sn116 are due to the same calculation as in table 3.

Xj = 0 = ~ Xj = — 2x0 Nucleus (A,Z)

E................... 2.26 2.45 2.65 116,50
B................... 5.7 6.8 8.0 lowest excited state
Bo................... 16 14 12

E................... 2.61 2.63 2.66 90,10
B................... 8.4 8.0 7.6 lowest excited state
Bo................... 6.3 6.5 6.8

E................... 1.36 1.50 1.61 148,60
B................... 21.0 21.5 21.6 lowest excited state
Bo................... 45.8 35.0 27.1

E................... 4.65 4.66 116,50
B................... 9.0 8.7 8.5 next strong state
Bo................... 8.2 8.3 8.2

E................... 4.30 4.31 4.32 148,60
B................... 8.8 9.2 9.6 next strong state
Bo................... 12.0 11 11

E................... 4.70 4.75 4.79 142,60
B................... 1.9 1.1 0.5
Bn................... 0.05 0.1 0.2

In the medium region around hcoo, the states are weaker since some 
T = 0 strength is sucked down by x0 and some r = 1 strength upwards by 
xl. If only the lines are included in the unperturbed spectrum, a calcula
tion using the same values of x() and as in fig. 6 g gives the perhaps some
what surprising result that no strong t ~ 1 line is formed above the F1 lines. 
This reminds us of what happened when only F2 was included. In sect. 6 
we saw that then a rather strong force x0 was needed to suck a greater part 
of the oscillator strength out of the unperturbed lines.

In the low-energy spectrum, the presence of xx tends to decrease Z41, 
and this may have considerable influence on B and Bo. A quantitative 
insight requires a more detailed study. For the resulting state of lowest 
energy the changes depend on 1) the relative magnitude of Sp and Sn, 
2) whether the near-lying unperturbed modes are neutron or proton excita
tions. When Sn > Sp,Xi tends to mix more proton motion into the state, B 



Nr. 1 43

increases and Bo goes down (see the data for A,Z = 116,50 in table 5). 
The opposite trend is observed when Sp > Sn (e.g. A,Z = 90,40). It may be 
noted that only few cases exist where Sn < SP(B(} < B) for the lowest state.

Some modification arises from the low-lying modes. An example is 
A,Z = 148,60 (table 5). Here, S” > Sp, and thus B increases when is
introduced, but only very little, since the lowest and strongest unperturbed 
transition inside the partly filled shells is a proton one (fig. 9), the role of 
which is weakened by xx.

In all the above mentioned cases xx makes the state less collective in 
the sense that E is increased. In A,Z = 142,60 we lind an example where

~ B (the neutron excess and the closing of the neutron shell neutralize 
each other). Then E,B and Bo are almost independent of whether xx = 0, 
xx = -0.5x0 or xx = -2x0 (table 6).

For the next strong excitation in the low-energy part of the spectra the 
rules from above may be used, but it may happen that B and both move 
up or move down, when xx is introduced. For the weaker levels one should 
be more careful by using simple arguments, since there is a strong dependence 
on the nearest unperturbed modes. Finally, table 5 gives an example (from 
A,Z = 142,60) of a line which is mainly of r = 1 character. (The line comes 
between a proton and a near-lying neutron mode). When the r = 1 part 
of the excitation is shifted to higher energy, B decreases strongly.

10. Simultaneous adjustment of x0 and Xj

When fitting the experimental energies by an isospin independent octu
pole-octupole force we make of course a systematic error. In this section 
we shall sketch briefly how our results would have been changed if a fit 
to experimental energies had been made by some general x0,xx mixture.

When, for the lowest state, B and Bo are different as, e.g., for A,Z = 116,50 
we see from table 6 that we are able to make very great variations in B 
and Bo, by keeping the energy fixed and varying x0 and xx simultaneously. 
This is not possible, however, when Bo — B as is the case for the next, 
strong state in A,Z = 116,50 or for the lowest excitation in A,Z = 142,60. 
For the energies we obtain the result that states with great difference between 
B and 7?0 move upwards relative to the states for which B and Bo are equal, 
when xx is introduced. An example is given in fig. 11. By applying these 
simple rules it is easy to predict the variations and we have not gone further 
into a systematic study.
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A,Z = 88,38 case 4 a

A,Z = 112,48 case 5bA,Z = 116,50 case 6

4.17

2.15
9.1

17
1.1
0

2.13
15
18

0.1
0.17

«i = -2x0 
c0 = 0.42

E
B
Bn
Br 
b

2.14
12
18
0.5
0.09

4.20
6.6
4.7
0.2

- 0.09

E
B
Bo
Br 
b

3.93
4.5
1.6
0.7

-0.33

4.04
2.1
1.1
0.1
0.72

4.23
7.5
4.6
0.4
0

2.16
17
22

0.4
0.24

E 
B 
Bo
Br 
b

Table 6. E, B, Bo, B1 and b in the same units as in table 3 for the two strongest, low-energy 
lines in some selected nuclei for different values of xv For Xj 4= 0 we have chosen x0 to give the 

lowest-lying resulting state approximately the same energy as when Xj = 0.

E
B
Bo
Br 
b

2.18
11
20

1.3
0.13

E
B
Bo
Br 
b

5.5
4.6
0.04

- 0.18

E
B
Bo
Br 
b

3.82
6.3
1.8
1.4
0

Xj — 0.5xo 
c0 = 0.435

Xj = 0 
c0 0.45

A,Z = 142,60 case 8a

E 2.74 4.63 E 1.92 3.77

Xi = 0
B 6.2 1.4

xL = 0
B 15 6.6

Bo 4.9 3.7 c0 = 0.45 Bo 16 20
Cn = 0.48

Br 0.07 0.5 Br 0.03 3.4
b 0 0 b 0 0

E 2.75 4.70 E 1.92 3.89
B 6.0 1.9

Xj = — 0.5 x0
B 15 8.5

= -0.5 x0 Bo 5.1 3.4 Bo 16 16
C() = 0.48 c0 = 0.45

0.01Br 0.03 0.2 Br 1.3
b 0.04 0.13 b 0.02 0.14

E 2.77 4.76 E 1.92 1.00
B 5.8 2.4 B 15 9.9

Z[ — 2x0
Bo 5.3 3.1 = -2x„

Bo 15 13
Cn = 0.48 c0 = 0.45

Br 0.01 0.05 Br 0.003 0.3
b - 0.08 0.25 b 0.03 0.28
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------------ 1---------1------1--------- 1----- 1 I----- 1--------- 1------!------1------1----------------------------------------*
56 58 60 62 Z
138 140142 142 144146 148 144 146 148 150 A

Fig. 11. Experimentally and theoretically determined values of the lowest resulting energy in 
nuclei in case 8 a from section 15. The theoretical values are calculated for different x0 and xv 
c0 is defined by = 7/x0 = cox A5/3 where x0 is the effective force constant as discussed in sections 

13 and 14. A is the atomic number.

Only one comment is left. As will be discussed below, it is almost always 
possible for = 0 to use a smoothly varying x0 in different regions of the 
periodic table. An exception is e.g. the nucleus A,Z = 90,40, for which a 
somewhat smaller x0 is needed to reproduce the experimental energy. As 
seen above, the theoretically determined energy is practically unchanged 
when 4= 0 is introduced (since B ~ Bq). Thus, 4= 0 cannot provide a 
greater x0.

11. Influence of on inelastic scattering

In the preceding sections we have discussed the influence of Xj on B 
and Bq which two quantities are relevant in Coulomb excitations and in 
the scattering of isospin-zero particles, respectively.

For some few examples, table 6 gives the quantity b, defined in sect. 4, 
especially connected to scattering, e.g. of protons or neutrons.

For Xj = 0, b vanishes, but already for xx = -0.5xo, in some cases it 
is so large that it should influence the relative cross section considerably. 
E.g. for \b\ = 0.1, the relative cross section for inelastic proton and a 
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particle scattering should diller by 20 °/0. From a comparison of the results 
in the table with those from the detailed calculation (tables 21 to 36) it is 
easily seen where the greatest effects are expected.

12. The collective character of the states

'fhe amount of collectiveness in the excitation can be demonstrated, e.g., 
by comparing 71 with the single-particle estimate Bs.p. (table 7). It may be

Table 7. The ratio for some selected nuclei of the predicted B value (from the detailed calcul
ation) to the single-particle value, using for this last one the estimate 

Bs p = 0.416 A2 e2 10- 78 cm6.

case 1 2a 3 a 5 a 6 7 a 7 b 7c

A,Z............. 60,28 88,38 96,42 110,48 116,50 124,52 124,52 124,52

16 24 23 14 12 6 3 17

case 8a 8a 8c 8c 9a

A,Z............. 140,58 150,62 140,58 150,62 208,82

13 35 20 45 33

mentioned that, when the single-particle transition of lowest energy goes 
from an almost filled to an almost empty level, every one of the particles 
gives a contribution to B, which thus may be large without any coupling 
between the excitations. More detailed information on the states is obtained 
from a study of the relative magnitude of the amplitudes for different two- 
quasiparticle creations and annihilations in the resulting excitation p(a,./i,./2) 
and q(<x,ji,j2) introduced in sect. 3.

If Xx = 0 but x0 4= 0 they are given by (ref. 1)

! <À||l’8y»ô

/Xæ’Jl’Â) = /ë7z» \\i/2 rv ■ A 7T • \ r ’ 0^'0(S (hcoj) EfjJ + 7l(j2) - 7icoa

/r\3
! <J211
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where hw^ is the energy of the state, and

S'(/iwa) = S'\hMx) + S'n(hMx). (12.3)

When htoa is not very near to the energy of any of the unperturbed inodes, 
many of these contribute to the stale with comparable amplitudes. Because 
of the denominators the amplitudes for quasiparticle annihilation are much 
smaller than for quasiparticle creation, unless /\) + TsX/a)))/i . This con
dition is fulfilled when the level is pushed far down from the unperturbed

Fig. 12 d.
Fig. 12. The numerical value

(p up q down) from the 6 or 7 unperturbed lines of lowest energy
lowest lying collective level in A,Z = 142,60 (case 8a).
lowest lying collective level in A,Z = 148,60 (case 8a).
lowest lying collective level in A,Z = 132,54 (case 7b).
second resulting level in A,Z = 148,60 (case 8). 
fifth resulting level in A,Z = 148,60 (case 8a). 
third resulting level in A,Z = 116,50 (case 6, a preliminary calculation). 

a) to the
b) to the
c) to the
cl) to the
e) to the
f) to the

0,5

Fig. 12 f.
of the two-quasiparticle amplitudes p(a, j\, j2) and q(a, jlf j2)
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energies towards zero, or when considering contributions from higher lying 
transitions.

For the state of lowest energy the amplitude has the same
sign as the reduced matrix element times the uv factor. This means that 
it has the same sign as the annihilation term in the two-quasiparticle inter
action (ref. BM). In this sense there is a special coherence in the lowest state. 
This coherence is also demonstrated by the fact that all contributions to B 
have the same sign, Sp only contains positive terms.

For the other stales the denominator in p(oc,jl,j2) is negative for contribu
tions from unperturbed modes at lower energy and positive for contributions 
from unperturbed modes at higher energy.

Then, some cancellation effect arises (cf. the discussion in sects. 6 and 
8 of the vanishing of the lines in the gap between the A A7 = 1 and the 

1 AT = 3 transitions).
In fig. 12 the numerical values of the amplitudes for the lowest resulting 

slate are given for a medium collective (a), a strongly collective (b), and a 
weakly collective case (c). For (c) the nearest unperturbed mode dominates 
completely. In (a) p2 - q2 from the lowest unperturbed excitation is — 85°/0, 
while in (b) the contribution from the six lowest ones is about 54 °/0. Thus, 
46°/0 is left for contributions from the remaining part of the levels in the 
unperturbed spectrum. In (d) and (e) we consider the '2nd and the 5th 
resulting slate from the same nucleus as in (b). (d) is a rather weak state 
where Sp < 0 because it lies just above a strong proton line, (e) is the second, 
strong state in the spectrum. Another example of this kind is (f).

13. The renormalization procedure

As mentioned above all the single-particle transitions in principle are 
taken into account when the resulting energies and transition probabilities 
are calculated. Thus, no concept of effective charge is introduced.

The contributions from the A N = 3 excitations are evaluated in the 
simple harmonic oscillator model. Such an approximative treatment may 
be justified by the fact that S2, the ZLV = 3 part of S, always plays a minor 
role in comparison to that of Si. When going to the highest end of the 
periodic table this changes somewhat, but still in 20SPb > 2S2, although 
the double closed shells allow no transitions of very low energy in Sj.

When performing the calculation we found it convenient to work with 
a renormalized force constant xeff defined by
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— S1(- S S2). (13.1)
xeff

The resulting energies are thus obtained as the solutions to this equation, 
neglecting the energy variation of S2. This should be a good approximation, 
when the low-energy states are considered.

To calculate B we added to Sf the quantity S% = 0.05 A5/3 which value 
was found to be a good approximation from 160 to 20SPb.

For S' = Sp + Sn we simply used since the difference is very small 
and of no importance, when the uncertainties in the treatment are remem
bered. In the calculation of Br and Bo we used values of S2, quoted in sect. 14.

14. The parameters

The nuclei which we have considered are divided into regions (cases) 
as shown below. In each of these regions G was chosen as 2O/Ao where Ao 
is some representative atomic number in the region. This standard value is 
pretty near to that which has been used before in spherical nuclei (refs. 4 
and 12).

An exception is made for the region 28 < Z < 50. Here, Kisslinger and 
Sorensen (ref. 12) have found that Gp (G for protons) should be 26/A to 
give the right quasiparticle energies. We have made calculations for both 
values of Gp and find the best results with the high one. (For further details: 
see below).

The shell-model levels e(J) have been taken from ref. (13) except for 
the partly filled shells for which the level separations were obtained from 
KS I and KS II or from stripping and pick-up experiments (for details, see 
below). Since one of the weakest points in the treatment is the poor knowledge 
of the exact value of e(j)s, we have in several cases made calculations with 
different level schemes.

In our treatment we have looked apart from short range neutron-proton 
interactions. Experimentally it is found that sometimes there are rather 
strong shifts in the single-particle levels, e.g., so that the neutron level with 
j = I - I moves down in energy when the lower spin-orbit partner is filled 
by the protons (ref. 14). By using a simple ^-function force it has been pos
sible to describe this effect (ref. 15), but the explanations are still rather 
tentative, and a survey including satisfactory quantitative predictions over 

Mat.Fys.Medd.Dan.Vid.Selsk. 35, no. 1. 4 
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a wider region of the periodic table does not exist. In some cases where 
experiments indicate the existence of this effect, it is taken into account.

Since many parts of the residual interaction are not explicitelv included 
in our Hamiltonian, we should not be surprised to see how the theoretically 
or experimentally determined effective locations of the levels change from 
region to region of the periodic table.

There is little direct evidence concerning the separation of levels in 
different shells. In our calculation the distance from the “center of gravity’’ 
of the partly filled shell to the centers of gravity in the shells above and below 
have been chosen to be approximately the same as in the simple shell-model 
calculation (ref. 13), but sometimes, w hen the shell is almost filled or almost 
empty, we have tried to reproduce approximately the distances corresponding 
to the strongest, low' energy transitions across the shells. It is clear that the un
certaintv here suggests to take the energies and B values of the states in the 
3-5 MeV region as even more tentative and preliminary results than those 
for the resulting state of lowrest energy.

In the determination of the x variation we started by estimating S2/A from 
the simple harmonic oscillator model, giving points on a line 0.027 A within 
5°/0. The experimental energies were inserted in S\ to give some experimental 
value of the effective force constant (13.1 ). Smoothe curves were drawn for 
7/xeffA = S1/A and 7/xA = S/A. As we could perhaps have expected, none of 
these curves could be fitted by a simple pow er dependence of A, but to a good 
approximation 7/xeff could in the different regions of the periodic table be 
given by a variation like A . Then all the calculations were run again, 
using

A 5/3

The details are discussed in section 15. In most cases c0 = 0.45 was chosen. 
This value corresponds to a force constant, given by

7 A5/3 A2
- = 0.45------ + 0.027
x MeV MeV

(14.2)

(cf. equation (13.1)).
Since S2 varies somewhat more strongly with A than S does, = S — S2 was 

a little lower in the heaviest nuclei (c0 = 0.404 for Pb).
For the lighter nuclei the situation was unclear, but may have a 

variation like A2.
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The .45/3 variation of x is somewhat slower than expected from the simple 
scaling argument in sect. 2. Whether this points to a real effect is difficult 
to sav, in view of uncertainties in S2 due to the meager knowledge of the 
high lying unperturbed modes, and in view of uncertainties in Sj which is 
strongly influenced by the two-quasiparticle excitations of lowest energy.

15. The calculation and the results

In our treatment we shall neglect the pairing interaction between neutrons 
and protons. Thus, it is essential that there is a reasonably large distance 
between their Fermi levels; therefore we have not considered nuclei with 
28 < Z < 40 when 28 < N < 40, whereas we have investigated nuclei with Z 
and N at each side of the subshell at 40 and nuclei, where the proton shell 
between 50 and 82 is almost empty and the same neutron shell is almost 
filled.

For each value of N and Z and for the possible, different level schemes 
the BCS equations (2.4) and (2.5) were solved and the values for u(j), f(j) 
and E(j) inserted into the eigenvalue equation for /lcoa(3.13). For some of 
the nuclei Â and A are given in tables 8 to 19. The distances from some levels 
in the partly filled shell to a level in the shell above and the shell below is 
given in table 20.

Table 8. A and zl for case 1.

N = 30 N = 32 N = 34 N = 36

2................ -0.32 0.131 0.594 1.079

A............. 0.810 1.048 1.152 1.142

Table 9. Z and zl for case 2 a.

Z = 30 Z = 32 Z = 34 Z = 36 Z = 38

2................ -0.560 -0.125 0.339 0.842 1.457

zl.............. 0.89 1.153 1.270 1.107 1.018

4*

N - 40 Ar = 42 N = 44 N = 46 N = 48

z................. 2.670 3.138 3.496 3.818 4.123

A............. 0.650 0.833 0.884 0.828 0.650
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Table 10. 2 and A for protons from case 2 b.

AT = 40 : Z = 30 Z = 32 Z = 34

2.................. -0.645 -0.205 0.257

.1................ 0.991 1.303 1.467

AT = 42 : Z = 32 Z = 34 Z = 36

z................... -0.263 0.178 0.667

.1................ 1.215 0.972 0.958

N = 44 : Z = 32 Z = 34 Z = 36

2................... -0.349 0.082 0.570

A................. 1.168 1.289 1.306

AT = 46: Z = 32 Z = 34 Z = 36 Z = 38

2.................. -0.429 -0.013 0.465 1.111

1................ 1.082 1.182 1.169 1.093

A’ = 48: Z = 34 Z = 36 Z = 38

2................... -0.116 0.364 1.060

A................. 1.114 1.082 0.963

AT = 50 : Z = 36 Z = 38

2................... 0.259 1.017

.1................ 0.955 0.760

Table 11. À and A for cases 3 a and 4 a.

Z = 38 Z = 40 Z = 42 Z = 44

2............ 1.435 2.293 2.858 3.286

A........... 0.848 0.835 0.996 1.039
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Table 11 (continued).

Z = 40: A’ = 52 N = 54 AT = 56

z............. -0.227 0.132 0.766

1........... 0.518 0.617 0.569

Z = 42: Ar = 52 AT = 54 ■N = 56 2V = 58

Å................ -0.242 0.119 0.685 1.189

1........... 0.534 0.653 0.687 0.968

Z = 44: N = 52 N = 54 iV = 56 N = 58 2V = 60

........................ -0.244 0.097 0.577 1.010 1.317

A........... 0.521 0.651 0.727 0.940 1.095

Table 12. z and A for case 5 a.

Z = 46 Z = 48 N = 56 2V = 58 N = 60 N = 62 N = 64 2V = 66 N = 68

Â................... 3.586 3.868 0.171 0.501 0.850 1.215 1.655 2.062 2.364

A................. 0.749 0.591 0.759 0.799 0.838 0.836 0.841 0.947 1.032

Table 13. 7. and A for neutrons from case 5 c.

N = 56 TV = 58 TV = 60 TV = 62 N = 64 N = 66 N = 68

z................... -0.093 0.150 0.415 0.726 1.131 1.529 1.833

A................. 0.898 0.957 0.971 0.942 0.914 0.988 1.057

Table 14. z and A for neutrons from case 6.

AT = 64 TV = 66 N = 68 N = 70 TV = 72 AT = 74

/......................... 1.199 1.700 2.012 2.277 2.520 2.746

.1................. 0.606 0.756 0.854 0.901 0.912 0.889
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Table 15. A and A for case 7 a.

Z = 52 Z = 54 Z = 56 Z = 58

Z.................. 0.241 0.425 0.616 0.818

A................. 0.504 0.674 0.774 0.828

A’ = 68 N = 70 Ar = 72 A’ = 74 A’ = 76 N = 78 AT = 80

Å................... 1.548 1.740 1.930 2.120 2.313 2.507 2.704

A................. 1.051 1.032 0.992 0.928 0.835 0.706 0.516

Tablf 16. A and A for protons from case 7 b.

Z = 52 Z = 54 Z = 56 ' = 58

z.................. -0.310 -0.095 0.143 0.414

J................ 0.438 0.569 0.631 0.657

Table 17. A and A for neutrons from case 7 c.

AT = 68 N = 70 AT = 72 A’ = 74 N = 76 N = 78 AT = 80

A.................. 2.040 2.290 2.519 2.731 2.931 3.122 3.307

A................. 0.745 0.797 0.815 0.800 0.749 0.655 0.491

Table 18 A and A for case 8 a.

Z = 56 Z = 58 Z = 60 Z = 62 AT = 84 A’ = 86 Ar = 88

/.................... 0.154 0.421 0.704 0.985 -0.469 — 0.275 -0.006

A................. 0.530 0.538 0.549 0.514 0.533 0.733 0.877

Table 19 A and A for case 9 b.

Z = 76 Z = 78 Z = 80

A.................. 2.709 3.055 3.283

A................. 0.139 0.233 0.152

2V = 114 AT = 116 N = 118 N = 120 A' = 122 A’ = 124

A.................. 1.546 1.716 1.887 2.056 2.227 2.444

A................. 0.721 0.665 0.604 0.529 0.425 0.256
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shells and a level inTable 20. The energy difference between some level in the partly filled 
the shell above or below.

case levels energy (MeV)

1, protons and neutrons ............. .................. 3 I 7/2 —3 P3/2 2.6
4 gg/2 g7/2 3.88

2 a, protons....................................... ........... 2 d3/2 —3 f 5/2 7.5
4 §9/2 t g7/2 2.4

2 a, neutrons..................................... ........... 2 d3/2 -3f 5/2 7.5
4 §9/2 '4 g7/2 2.2

3, protons ....................................... ........... 2 d3/2 —3f 5/2 7.5
4 §9/2 —4 g7/2 2.4

3, neutrons .................................... 2.9
5 h11/2 5 f 7/2 5.4

5 b, protons....................................... .................. 3 f 7/2 — 3 f 5/2 2.9
4 §9/2 -4 §7/2 2.4

5 b, neutrons..................................... .................. 4 §9/2 — 4 d5/2 3.6
4 S 1 / 2 —5 f 7 / 2 4.9

6, neutrons .................................... ........... 4 §9/2 1 d5/2 3.4
3 t>ll/2— 5 f 7/2 3.6

7 a, protons....................................... .................. 4 §9/2 —4 ds/2 3.0
4 S 1/2 —5 f 7/2 4.44

7a, neutrons..................................... .................. 4 §9/2 —4 g7/2 3.2
4 s 1/2 —5f 7/2 5.7

8 a, protons....................................... ........... 5hn/2—5f 7/2 5.4
4 §9/2 —4 g7/2 2.2

8 a, neutrons.................................... .................. 3Pl/2 —6§9/2 2.3
4 S 1 / 2 -5 f 71 2 4.67

9b, protons...................................... ........... 4 s i/2 —5 h9/2 4.26
4 §9/2 ~4 §7/2 2.1

9b, neutrons.................................... ..................... 3 Pl/2 —6 g8/2 3.6
4 s 1/2 —5f 7/2 4.95

The number of terms in was between 54 and 96, greatest in the 
heaviest nuclei.

The calculation was performed on a GIER computing machine with 
programs written in ALGOL.
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In general the len lowest resulting energies have been calculated. In 
tables 21 to 36 we report all those which seem to be of interest with special 
emphasis on those excitations which have significant values of B or Bo. In 
figures 13 to 20 we give the energy of the lowest mode and compare with the 
experimental data. When experimental B values are available, we also give 
the theoretical results.

A very large part of the experimental information comes from an article 
by Hansen and Nathan (ref. 16). The B values, given by these authors, 
were derived from inelastic a scattering experiments, assuming pure Cou
lomb excitation. However, it appears that owing to the fact that the energy 
of the a particles comes near to the Coulomb barrier, penetration becomes 
important, and the real B values are smaller by a factor two or three in 
most cases (an exception seems to be the A ~ 145 region, cf. ref. 48). There
fore only the energies from ref. 16 are given below.

Case 1 : Z = 28.
In this region the proton shell is closed, and the situation could be 

expected to be somewhat similar to Sn where a strong line appears just below 
the energy of the proton transitions between the shells. Such a line is only 
seen for the heaviest isotopes.

For neutron number = 30, the neutron fermi energy lies below the lowest 
level in the partly filled shell, the neutron transitions are rather high in energy, 
and most of the available oscillator strength is concentrated on one level. 
The calculations were done with the KS II neutron levels: /5/2 A),/>3/2:0, 
p1/2:3 and <79/2:4 MeV and with the KS I levels 0.78, 0, 1.56 and 4.52 MeV. 
Since Cohen, Fulmer and McCarthy found good experimental agreement 
with the last level scheme (ref. 17) we only report the results which have 
been obtained when using this scheme. For the KS II single particle energies 
there is an accidental degeneracy which can give rise to special phenomena 
in the figures. Apart from this, the results from the two calculations are not 
very different.

In recent (d,C) experiments, the results of which were published when 
our calculation was finished, Fulmer and Dalhnick (ref. 18) find good 
agreement with KS I, only the p1/2 level should perhaps come at 1.12 MeV.

Since the proton shell is closed, the lowest resulting slates are essentially 
governed by the strong neutron transition p3/2 - f/9/2 and the weak /5/2 - <y9/2 
transition. The proton transitions coming up from the (sd)-shell are rather 
weak and not very low energetic. The most important proton excitation is 
/7/2_.99/2 which is of medium strength. If we change the intershell distance 
/7/2“T3/2 from 2.6 MeV, the value we have used, to 4 MeV, as supposed by
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58 60 62 64 A

Fig. 13. The lowest-lying theoretical and experimental energies and B values for the Ni group 
(case 1), c0 = 0.39. The dashed lines indicate the two-quasiparticle energies. The experimental 

data are taken from different authors (ref. 34).

KS II, the B value in A,Z = 58,28 is diminished by a factor of 2, whereas 
in 64,28 it goes down by a factor |. The energy is 0.5 MeV greater in the 
lightest nucleus, 0.1 in the heaviest one. This great influence, especially on 
the B values, is not very surprising, since mainly the protons contribute 
here. The r = 0 part of B is less affected.

The best fit to the energies was reached by c0 = 0.39, for which the ener
gies are plotted in fig. 13. This value does not lie on the smooth curve for 

discussed in sect. 14, and therefore another calculation was run, using 
c0 = 0.435. In table 21 the lowest energy is given for c0 = 0.435 and energies 
for all the stronger lines for c0 = 0.39.

The theory indicates the existence of one or two higher-lying excitations 
of appreciable strength and in some cases such levels are found, but the agree
ment between theory and experiment is poor, perhaps because of uncer
tainties in the shell-model levels.

The B values of the lowest level are rather well reproduced by theory. 
We note that when we extend the /7/2~P3/2 distance towards the KS II value,
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Table 21. The first row gives energy, B and Bo for the state of lowest excitation energy for case 1, 
c0 = 0.435. The following rows contain data for the most strongly excited, low-lying states 

in case 1, when c0 = 0.39.
For units, see caption to table 3.

A,Z: 58,28 60,28 62,28 64,28

E, B, Bo: 4.84 1.8 2.5 4.46 1.7 2.9 4.19 1.6 3.3 3.95 1.5 3.5
4.47 2.5 3.3 4.07 2.4 3.9 3.82 2.3 4.4 3.57 2.3 4.8
6.13 0.6 0.3 6.25 1.2 0.6 6.26 1.4 0.8 6.21 1.5 1.0
6.31 0.2 0.1 7.30 0.2 3 x 10-2 7.33 0.2 4 x IO“2 7.33 0.2 5x 10-2
7.24 0.2 io-2

B passes the experimental figure. As it was to be expected, Sp < Sn for the 
lowest level and Bo > B as discussed before. When the number of neutrons 
increases, the lowest resulting level is pressed down, away from the lowest 
proton mode; B decreases and B{} goes up.

Note added in proof: A new investigation of the Ni spectra has recently 
been planned in Paris. Partly inspired by this experiment we have perfor
med two more calculations to see how the results are changed when other 
single particle shell model level schemes are used: (b) proton levels /'7/2: 
-3, p3/2:0, /‘5/2:0.8, Pi/2:2.2 and </9/2:3.0 MeV, neutron levels /’7/2:-4, 
^3/2:0> /5/2:0-77’ Pi/2:1-12 and g9/2:4.0 MeV, Gn = 24/A. (c): The </9/2 neu
tron level placed at 3 MeV, the other levels unchanged from (b). Gn = 24/A. 
In both cases c0 = 0.39. The results are presented in tables 21 b and 21 c.

Table 21 b. Energy, B and Bo (in same units as in table 3) for the strongest, low energy exci
tations in case 1 b, when c0 = 0.39.

58,28 60,28 62,28 64,28

4.57 3.3 3.1 4.31 3.3 3.9 4.04 3.2 4.7 3.77 3.2 5.4
6.55 0.006 0.2 6.23 0.1 0.06 6.04 0.4 0.003 5.92 0.6 0.01
7.40 0.2 0.09 7.35 0.3 0.2 7.33 0.3 0.3 7.25 0.3 0.5
7.95 0.1 0.4 8.00 0.2 0.4 7.94 0.1 0.5 7.73 10~3 0.3

Table 21 c. Energy, B and Bo (in the same units as in table 3) for the strongest, low energy 
excitations in case 1 c, when c0 = 0.39.

A,Z:

E, B,B0:

58,28 60,28

4.34 3.1 3.3 4.03 3.0 4.0
6.12 0.2 0.01 5.91 0.4 IO“2
7.15 0.2 0.4 7.25 0.3 0.4

62,28 64,28

3.78 2.9 4.6 3.61 2.9 5.2
5.84 0.7 0.05 5.79 0.8 0.1
7.28 0.3 0.4 7.27 0.3 0.5
7.79 0.01 0.1 7.79 0.2 0.5
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Case 2: 28 < Z < 40; 40 < N < 50
Here rather many neutrons (or rather neutron holes) are available in 

the unfilled shell for the lighter isotopes whereas there are only few protons. 
The B values are low in the beginning and increase with increasing atomic 
number. There is some tendency for giving a line in the gap above the transi
tions inside partly filled shells, but the stronger proton transitions between the 
shells are rather high in energy and do not contribute much to the low- 
energy spectrum.

Calculations were made for (a) the KS I proton levels /5/2 = 0, p3,.2 = 0.6,
Pi/2 = 1.8 and p92 = 3.4 MeV and Gp = 26/A. Neutron levels from KS II:
/å/2 = 0, p3/2 = 0.3, p1/2 = 2.5 and g9/2 = 3.6 MeV. (b) neutron levels like
in (a), proton levels which are almost equal to the KS II ones: p3/2:0,
/?1/2:1.8, ÿ9/2:2.8 and /5/2: - 0.6 + (50 - AT) x 0.1 MeV where N is the neutron 
number, Gp = 26/A. In both cases c0 = 0.45 was used. The lowest proton 
and neutron two-quasiparticle excitations are the weak f5/2 — g9,2 and the 
strong P3/2~9q/2 transition. When going from (a) to (b) the p3/2 g9/2 distance 
which represents the strong proton transition inside the shell is constant, 
and thus the (a) and (b) results are rather similar. The differences arise 
from the fact that in (b) the /5/2 proton level is placed above p3/2 and is 
populated less for the lower values of the neutron number. Therefore the 
strong p3/2 —f/9/2 transition has the greatest uv factor in (b), and B is larger. 
In tables 22 and 23 we give the results for cases (a) and (b). The lowest 
level was discussed above. For the second level, given in table 22, Sn is small, 
because we have just passed a neutron excitation. Thus in most cases B > Bo.

Some of the lines of higher energy are rather mixed in isospin character 
(tfo B !>> B\ indicating that the line is primarily due to neutron excitations. 
The experimental material is very meager. For the lighter nuclei Darcey gives 
energies below the theoretically predicted values and with slower variation.

For A,Z = 88,38 the energy is rather well reproduced by the (a) calcula
tion, but B is too small by 3O°/o (see also the results from case 3).

Case 3: Z = 40, 42; 50 < N < 82. (A,Z = 88,38 is also included).
In this region, we start with a relative large lowest energy in A,Z = 90,40, 

having a closed neutron shell and closed proton subshell, but B is large 
since the transition across the proton subshell is strong. When more neutrons 
enter, the energy goes down. The quantity B is almost constant and is spread 
a little over the lowest levels.

We used the KS I proton levels (as in case 2 a), and neutron levels based 
on stripping experiments (ref. 19) d5/2:0, .s1/2:1.7, </7/2:2.6, d3/2:2.7 and
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Table 22. Energy, B and Bo for the low-energy, stronger levels in case 2 a, c0 = 0.45. 
Same units as in table 3.

A,Z: 70,30 72,32 74,32

E, B, Bo; 2.54 1.4 4.4 2.51 2.0 5.0 2.84 2.0 5.2
5.05 0.5 0.4 1.75 1.1 0.5 4.78 1.0 0.4
5.28 0.7 0.7 5.63 0.2 0.8 5.67 0.3 1.0

A,Z: 76,32 78,32 74,34

E, B, Bo: 3.13 2.1 5.2 3.29 1.9 4.9 2.42 3.2 6.1
4.79 0.8 0.3 4.22 0.3 0.5 4.41 0.3 0.3
5.62 0.3 1.1 5.46 0.1 0.9 5.60 0.4 1.1

6.35 0.5 0.3

A,Z: 76,34 78,34 80,34

E, B, Bo: 2.72 3.3 6.3 3.01 3.4 6.2 3.17 3.2 5.9
4.44 1.2 0.2 4.43 0.7 0.2 4.17 0.6 0.4
5.65 0.6 1.3 5.59 0.5 1.5 4.53 0.6 0.04

5.42 0.3 1.3

A,Z: 82,34 78,36 80,36

E, B, Bo: 3.19 2.7 5.4 2.44 5.7 7.8 2.67 5.7 7.4
4.16 1.5 1.2 3.92 0.6 10~4 5.46 1.3 1.8
5.18 0.07 0.9 5.51 1.4 1.7

A,Z: 82,36 84,36 86,36

E, B, Bo: 2.82 5.6 7.1 2.89 5.2 6.8 2.85 4.6 6.5
5.31 0.9 1.7 3.87 0.5 0.2 3.73 1.1 0.3

4.58 0.03 0.6 4.69 0.2 1.7
5.11 0.3 1.0 6.00 0.5 0.3
6.13 0.7 0.2

A,Z: 84,38 86,38 88,38

E, B, Bo: 2.46 8.0 8.2 2.54 7.6 7.9 2.55 7.1 7.8
5.14 1.6 1.6 4.53 0.3 1.1 4.59 0.7 2.3

4.94 0.5 0.8 5.50 0.6 0.06
5.77 0.5 0.02
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Table 23. Energy, B and Bü for the level of lowest excitation energy in case 2 b, c0 = 0.45. The 
following levels are rather weak and not very different from case 2 a. Same units as in table 3.

A,Z: 70,30 72,32 74,32

E, B, Bo: 2.41 2.1 5.2 2.33 3.1 6.2 2.65 3.2 6.2

A,Z: 76,32 78,32 74,34

E, B, Bo: 2.97 3.0 6.0 3.16 2.7 5.5 2.25 4.4 7.2

A,Z: 76,34 78,34 80,34

E, B, Bo-. 2.54 4.5 7.2 2.82 4.4 6.9 3.00 4.1 6.4

A,Z: 82.34 78,36 80,36

E, B, Bo: 3.08 3.5 5.8 2.41 6.1 8.2 2.64 6.1 7.8

A,Z: 82,36 84.36 86,36

E, B, Bo: 2.75 5.9 7.2 2.81 5.4 6.7 2.77 4.8 6.4

A,Z: 84.38 86,38 88,38

E, B, Bo: 2.51 7.6 7.9 2.49 7.3 7.4 2.37 7.0 7.1

h11/2:2.8 MeV. Two calculations were run. a) Gp = 26/A and b) Gp = 20/A. 
The neutron single-particle energies might be somewhat uncertain. There 
is some indication of a rather strong movement of the </7/2 neutron level 
(ref. 20). Therefore this level is lowered by 0.4 MeV in Z = 42.

When neutrons are added to Ar = 50, the strong neutron transition 
d5/2 — h11/2 is populated and goes rapidly down in energy. At N = 56 there 
is a minimum for the collective energy. After that the transition goes up, 
and the weak g7/2 — h11/2 transition becomes the lowest one. The proton 
excitations have higher energy, and the uv factor in the numerator in 5 goes 
down (to 0.7) with increasing Z. To fit the experimental energy, c0 = 0.48 
was needed, which is greater than in the neighbouring cases. In fig. 15 the 
results are given for Z = 40 when using c0 = 0.45. From the previous dis
cussion we remember that we are not able to fit the energies with a lower 
c0 value, if < 0 is introduced.

For Z = 40 the lowest level of the lightest nuclei has Sp > Sn and thus
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Fig. 14. The lowest-lying theoretical and experimental energies and B values for case 2a. The 
experimental data for A,Z = 88,38 are due to Helm (ref. 35). The other ones come from an ex

periment by W. Darcey (ref. 36).

Table 24. Energy, B and Bo for the low-energy, stronger excitations in cases 3 a and 4 a, c„ = 0.45. 
Same units as in table 3.

A,Z: 88,38 90,40 92,40

E, B, Bo: 2.74 6.2 4.9 2.61 8.4 6.3 2.37 9.1 9.3
4.63 1.4 3.7 4.23 1.7 2.2 4.36 1.8 1.3
4.80 1.5 2.7 4.80 0.5 0.2 5.19 0.3 1.3

5.06 7 x IO-3 0.8

A,Z: 94,40 96,40 92,42

E, B, Bo: 2.03 9.3 13 1.62 9.8 17 2.93 9.2 7.1
3.31 0.7 0.02 3.21 1.5 0.07 4.06 0.9 1.0
4.40 1.9 1.1 4.41 1.9 1.1 4.28 0.8 1.0
5.24 0.4 1.1 5.27 0.6 1.5 4.80 0.6 1.0

5.07 0.01 0.9

A,Z: 94,42 96,42 98,42

E, B, Bo: 2.63 9.0 9.7 2.26 8.6 12 1.92 8.7 15
4.12 0.6 0.3 3.54 1.4 0.07 3.49 2.1 0.3
4.36 1.4 1.0 4.12 0.6 0.2 4.13 0.5 0.2
5.19 0.3 1.4 4.39 1.6 0.9 4.40 1.7 0.9

5.26 0.7 1.5 5.29 0.8 1.7



Nr. 1 63

MeV

1 I I I I I I I I I I I 1 I I---------------------
39 40 42 44 Z
88 90 92 94 96 92 94 96 98100 96 98100102104 A

Fig. 15. Energies and B values for cases 3 and 4, where d5/2 /i11/2 and gll2 /i11/2 denote the 
energy of the two-low lying neutron quasiparticle excitations. The theoretical energies are 
calculated with c0 = 0.48. For Z = 40 the results for c0 = 0.45 are shown. The experimental 

energies are due to Hansen and Nathan (ref. 16). For A,Z = 88,38 see caption to fig. 14.

Table 24 (continued).

A,Z: 100,42 96,44 98,44

E, B, Bo: 2.11 8.8 15 2.76 8.1 9.7 2.36 7.6 12
3.55 1.5 0.06 3.75 2.2 0.5 3.74 3.1 0.8
4.43 1.7 0.8 4.29 1.6 1.1 4.31 1.8 1.1
4.77 5.6 0.3 5.00 0.3 0.5 5.02 0.4 0.6
5.37 1.4 1.6 5.44 io-5 0.6

A,Z: 100,44 102,44 104,44

E, B, Bo: 2.06 7.6 14 2.17 7.7 14 2.32 7.5 14
3.75 3.0 0.8 3.79 2.9 0.6 3.82 2.4 0.4
4.33 2.0 1.1 4.36 2.1 1.0 4.38 2.2 0.9
4.72 0.5 0.4 4.73 0.6 0.4 4.74 0.7 0.4
5.03 0.6 0.6 5.05 0.7 0.6 5.06 0.9 0.6
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Table 25. Energy, B and Bo for the lowest excitation, case 3 b and 4 b, c0 = 0.45.
Same units as in table 3.

A,Z: 88,38 90,40 92,40

E, B, Bo: 2.26 6.0 4.4 2.10 9.9 7.0 1.92 11 10

A,Z: 96,40 96,40 92.42

E, B, Bo: 1.64 13 15 1.28 15 21 2.29 9.3 6.5

A,Z: 94,42 96,42 98,42

E, B, Bo: 2.12 11 9.5 1.87 12 13 1.60 12 17

A,Z: 100,42 96,44 98,44

E, B, Bo: 1.77 12 17 2.48 9.6 9.7 2.17 9.5 12

A,Z: 100,44 102,44 104,44

E, B, Bo: 1.91 9.5 15 2.02 9.5 15 2.16 9.4 15

Bo > B. This is changed when the neutron number grows, and for some 
nuclei Bo ~ 2B. The smaller Gp in case b results in smaller collective energy 
but causes no major changes in B. We note that the theory predicts the 
existence of some higher-lying collective states.

Case 4 : Z = 44.
The levels are the same as in case 3, only the neutron <y7/2 is lowered 

still further and the splitting in the neutron states changes a bit because of 
the variation in A.

The neutron levels are : </5/2:0, s1/2:1.6, <j7/2: 1.8, d3/2:2.6 and h11/2:2.7 MeV. 
For the discussion, see case 3.

Case 5: Z = 46 and 48.
When passing on to this region there are still fewer proton holes in the 

partly filled shell, and the available oscillator strength is not concentratedon 
the lowest excitation. A number of level schemes was studied. We shall 
only mention three :

a) the same proton levels as in case 3 a.
Gp = 26/A.
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Neutron levels experimentally found by Cujec (ref. 21) in stripping 
experiments in Pd g7/2:0, d5/2:1, s1/2: 2.5, 7i11/2 : 2.9 and t73/2:3.1 MeV.

26
b) same proton levels as in a) Gp = —.

KS I neutron levels
^5/2• « 9,7/2:®"22, Sjy2:1.9, d2/2:2.2, and 2.8 MeV.

26
c) proton levels like in a) Gp = neutron levels from a tentative

A
interpretation of a (d,p} and (d,t) experiment in Cd by Rosner 
(ref. 45).
rf5/2:0> #7/2:0-2, 7i11/2:2.25, s1/2:2.25 and d3/2:2.85 MeV.
This scheme is in fair agreement with the experimental (d,p) results, 
obtained by Silva and Gordon (ref. 46) who find g7/2 to be placed 
less than 0.4 MeV above d5/2. KS II assumes this distance to be more 
than 1 MeV.

In a) there is a rather strong variation in the lowest neutron two-quasi- 
particle energies. The transition d5/2-7q1/2 has the lowest energy, which 
varies much as Â passes d5/2. In addition, the uv factor varies from 0.4 to 1. 
This causes a rapid variation in the resulting energy. This variation is not 
found in b) or c), since here the c/5/2 - 7j11/2 uv factor only varies from 0.6 
to 0.9 and the two-quasiparticle energy changes more slowly. The lowest 
unperturbed energy appears about 0.5 MeV lower in c) than in b). The

Table 26. Energy, B and Bo for the low-energy, stronger excitations in case 5 a, c0 = 0.45. 
Same units as in table 3.

A,Z: 102,46 104,46 106,46

E, B, Bo: 2.95 11 11 2.71 8.6 10 2.29 7.1 11
4.11 1.7 0.5 3.71 2.8 0.7 3.66 4.3 1.5
5.25 0.2 1.3 4.07 1.9 0.9 4.07 2.0 1.0

5.28 0.3 1.2 5.30 0.4 1.2

Mat.Fys.Medd.Dan.Vid.Selsk. 35, no. 1.

A,Z: 108,46 110,46 106,48

E, B, Bo: 1.86 7.0 13 1.60 7.4 16 2.73 8.9 11
3.65 4.9 1.8 3.65 5.1 2.0 3.76 4.7 1.4
4.07 2.2 1.1 4.07 2.3 1.2 5.23 0.5 1.2
5.31 0.5 1.1 5.33 0.5 1.1

5
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Table 26 (continued).

A,Z: 108,48 110,48 112,48

E, B, Bo: 2.33 7.2 11 1.19 7.0 13 1.65 7.2 15
3.71 6.5 2.3 3.70 7.4 2.9 3.70 7.8 3.2
5.25 0.5 1.1 5.25 0.6 1.0 5.48 0.2 1.0

A,Z: 114,48 116,48

E, B, Bo: 1.77 7.5 16 1.99 7.6 16
3.46 1.7 1.2 3.62 4.2 2.3
3.75 6.8 2.6 3.83 4.0 1.2
5.51 0.5 1.1 5.53 0.7 1.0

Table 27. Energy, B and Bo for the low-energy, strong excitations in case 5 b, c0 = 0.45. 
Same units as in table 3.

A,Z: 102,46 104,46 106,46

E, B, Bo: 2.67 11 13 2.53 11 14 2.38 10 15
4.16 2.1 0.4 3.82 1.1 0.03 3.79 1.8 0.2

4.14 2.3 0.5 4.13 2.5 0.7

A,Z: 108,46 110,46 106,48

E, B, Bo : 2.22 9.5 16
3.76 2.6 0.5
4.12 2.6 0.9

2.10 9.1 17
3.74 3.3 0.8
4.11 2.6 1.0

2.57 11 14
3.95 3.4 0.4

A,Z: 108,48 110,48 112,48

E, B, Bo: 2.42 10 15
3.90 4.5 0.8

2.27 9.6 16
3.85 5.5 1.3

2.15 9.1 17
3.82 6.2 1.7

A,Z: 114,48 116,48

E, B, Bo: 2.22 9.7 18
3.85 5.9 1.6

2.35 10 19
3.89 5.3 1.3

Table 28. Energy, B and Bo for the low-energy, stronger excitations in case 5 c, c„ = 0.45. 
Same units as in table 3.

A,Z: 102,46 104,46 106,46

E, B, Bo: 2.38 9.6 13
3.72 2.8 0.6
4.08 2.0 0.8

2.20 9.1 14
3.71 3.4 0.8
4.08 2.2 0.9

2.03 8.8 15
3.70 3.9 1.1
4.09 2.3 1.0
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Table 28 (continued).

A,Z: 108,46 110,46 106,48

E, B, Bo: 1.88 8.4 16
3.68 4.5 1.4
4.09 2.4 1.1

1.82 8.1 16
3.68 4.8 1.7
4.09 2.5 1.2

2.25 9.2 14
3.78 5.7 1.6

A,Z: 108,48 110,48 112,48

E, B, Bo: 2.08 8.8 15
3.76 6.5 2.0

1.94 8.4 16
3.75 7.2 2.5

1.88 8.1 16
3.74 7.6 2.8

A,Z: 114,48 116,48

E, B, Bo: 2.06 8.1 16
3.77 7.3 2.6

2.31 8.4 16
3.81 6.7 2.2

102 104 106100 110 106108 110 112 114 116 114 116 118 120 122 124 A

Fig. 16. Theoretically and experimentally determined energies and B values for cases 5 a and
5 b and for case 6. In 5, the quasiparticle energies are from case a. For cases 5, experimental 
data are available from Hansen and Nathan (ref. 16), from M. Sakai et al. (ref. 37), and from 
McGowan et al. (ref. 38). The experimental values for case 6 come from Lemberg et al. (ref. 39).

Experiments by Hansen and Nathan for the nuclei in case 6 give the same energies except 
for Sn120 where they find an energy of perhaps 2.40 MeV. Their B values are a factor of 3 greater 

than the experimental ones given in the figure.
5*



68 Nr. 1

proton Fermi energy is higher than the energy of the levels in the partly filled 
shell. The lowest proton transition becomes high in energy and the uv factor 
is only 0.5 for Z = 46 and 0.25 for Z = 48. This means that the transitions 
from p1/2 and f/9/2 to the next shell become important. The result is a strong, 
higher-lying 3_ state, for which B > 7?0 while B < Bo for the resulting level of 
lowest energy.

When comparing the results with the experimental data it is seen that 
none of the level schemes, which we tried, could give the correct trend 
in the energies and B values. Still, something seems to be missing to 
give the right variation with A. Therefore, further experimental studies of 
the location of the single-particle levels would be interesting.

Case 6: Z = 50.
The Sn region has been discussed above, especially in relation to fig. 6. 

We have seen how the closed proton shell gives rise to a higher-lying strong 
line.

Since the proton shell is closed, we used for the proton single-particle 
levels the Nilsson values (ref. 13) with the exception that 5 7i11/2 was placed 
in the middle of the 50-82 shell, just as in case 7 and as in the Mottelson- 
Nilsson paper (ref. 13). The energies are the following:

3/7/2: —2.1, ^7?3/2:^’ 3f5/2:0.7, 3p1/2:1.4,
4.79/2: ’ 4<75/2:7.1, 4</7/2:7.4, 4s1/2:9.1,
4<73/2:9.2 and 57j11/2 : 8.4 MeV.

The neutron levels were taken from KS I :

^5/2:^’ 77/2 Si/2:1.9, <73/2:2.2, /?11/2 : 2.8 Me\ .

Calculations have also been performed for another neutron level scheme, 
proposed by Cohen and Price on the basis of a stripping experiment (ref. 22). 
Since, however, they give a poorer fit to experimental energies, and since 
after publication the measurements have been reinterpreted (ref. 23) so that 
the level scheme comes much closer to KS I, the results of this calculation 
are not reported.

The two neutron transitions in the partly filled shell are the weak (?7/2 — 7zu/2 
and the strong 75/2-7in/2, which lies a little higher. The energies of both 
transitions go up and the uv factor down, when A increases.

The transitions from the closed proton shell give rise to the second 
strong line. The line of lowest energy has Bo/B ~ 2.5 due to the small Sp 
because of the closed shell, whereas the higher lying strong line has Bo/B < 1.
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Table 29. Energy, B and Bo for the low-energy, stronger excitations in case 6, c0 = 0.45.
Same units as in table 3.

A,Z: 114,50 116,50 118,50

E, B, Bo: 2.11 6.2 15 2.20 6.9 18 2.31 7.7 20
4.24 7.8 4.5 4.23 7.5 4.6 4.22 6.9 4.6
5.11 1.4 2.9 5.31 0.5 2.4 5.14 0.02 1.6

5.57 1.4 1.0

120,50 122,50 124,50

2.43 8.4 22 2.56 9.1 24 2.70 9.8 26
4.20 6.2 4.5 4.19 5.3 4.2 4.18 4.2 3.5
5.01 0.05 1.0 5.44 0.8 1.9 5.34 0.4 1.9
5.52 1.3 1.6

Some of the levels of higher energy have very different values of 77O and B. 
In some cases B<<B0 because the line is a rather pure neutron one.

The energies are in good agreement with the results of Lemberg et al. 
and of Hansen and Nathan (see fig. 16), but the B values are smaller by 
a factor 2 or more than the Lemberg ones.

It is noteworthy that this large discrepancy appears just in Sn where, 
as mentioned above, Bo/B is extraordinarily great and thus the introduction 
of an isospin dependence in the octupole-octupole force will have especially 
large effects on B. However, we see from tables 5 and 6 that an unexpected 
large value of - x1/x0 is needed to reproduce the experimental B value com
pletely.

It is rather unsatisfactory that the proton single-particle levels come 
just from a simple shell-model calculation. Because of the uncertainty in 
the position of the proton 57i11/2 level we have performed a calculation with 
the energy of this level increased by 0.8 MeV. Some results are given in 
tables 3 and 5. The shift in the 5 7j11/2 single-particle energy causes consi
derable changes, especially for the higher-lying, strong excitation, since the 
4<79/2 - 57in/2 proton transition (energy 4.7 MeV) is one of the strongest ones 
in the low-energy spectrum.

Preliminary results from inelastic a scattering by Faraggi et al. (ref. 24) 
indicate the possible existence of a second, strong 3“ state around 5 MeV in 
A,Z = 122,50 and 124,50, the intensity being however much lower than 
when exciting the lowest octupole state.

It is interesting to note that from the calculation B should be roughly 
equal for the higher lying state and for the lower lying one, while Bo, which 
is the relevant quantity in a scattering, should be much smaller. Recently, 
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Allan et al. (ref. 25) have by means of inelastic proton scattering found 
a possibly collective level in A,Z = 116,50 and 118,50 around 3.9 MeV with 
unknown spin and parity. For the heavier Sn isotopes this level has disap
peared, at least in the region below 4.7 MeV. It would be interesting to study 
the possible relationship between this state and the states found by Faraggi 
et al.

Case 7: 50 < Z < 82, 50 < N < 82.
As mentioned in connection with fig. 10, there are here only few protons 

and few neutron holes in the partly filled shells and the oscillator strength 
in the low-energy spectrum is spread over several levels. Three level schemes 
were used, viz.

a) protons: ^7/2:0.8, d5/2:0.8, 7i11/2:2.4, c/3/2:3.13 and s1/2:3.36 MeV ; 
neutrons: d5/2:0, <77/2:l, /i11/2:1.66, s1/2:2.1 and d3/2: 2.37 MeV.

b) same level scheme as in a), but the proton g7/2 is lowered to 0 MeV.
c) protons like in a), neutrons like in case 6.
The proton levels in a) were chosen on the basis of a suggestion by Kiss- 

LiNGER (ref. 26) and are almost identical to the KS II levels. The neutron 
levels in a) come from a stripping experiment in the AT = 82 region (ref. 27). 
There is rough agreement between this neutron level scheme and single
particle energies, found by Jolly in (d,p) and (d, /) experiments in 77 (ref. 47).

In case b) we only changed the position of the proton g7/2 level in order to 
investigate how this modifies the picture. The two level schemes a) and c) 
are really different, and we report in detail the results for both with the 
aim to demonstrate the influence of changing the single-particle parameters.

The main difference between the “a-neutron levels” found by experi
ment in the end of the region and the c levels, which fitted the quasiparticle 
energies nicely in Sn, is that hn/2 in the last case is placed at the top of the 
shell, so that the neutron transitions from d5l2 and g7/2 are allowed by the 
iw factor, whereas in the first case h11/2 as well as d5/2 and g7/2 are almost

Table 30. Energy, B and Bo for the low-energy, stronger excitations in case 7 a, c0 = 0.45. 
Same units as in table 3.

A,Z: 120,52 122,52 124,52

E, B, Bo: 1.93 7.3 14 2.09 5.7 11 2.24 4.2 7.7
2.36 2.1 3.2 2.47 3.1 5.1 2.58 4.8 6.5
4.19 7.8 5.8 4.23 8.3 6.0 4.24 8.7 6.3
5.31 1.8 0.7 5.32 1.7 0.6 5.12 0.2 1.5

5.35 1.3 0.2
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Table 30 (continued).

A,Z: 126,52 128,52 130,52

E, B, Bo : 2.39 3.2 5.5 2.54 3.0 4.8 2.68 4.8 6.1
2.68 5.4 6.3 2.76 4.9 4.8 2.81 2.5 2.0
3.15 0.2 1.8 3.31 0.8 3.5 3.52 1.9 5.1
4.24 8.9 6.7 4.24 9.1 7.4 4.21 8.9 8.1
5.20 1.0 2.1 5.22 1.4 2.4 5.20 1.3 2.8

A,Z: 124,54 126,54 128,54

E, B, Bo: 2.01 9.7 15 2.16 8.8 12 2.30 8.6 11
2.41 2.8 2.9 2.48 3.5 3.2 2.56 3.2 2.5
4.35 7.6 5.9 4.37 8.0 6.2 3.17 0.1 1.9
5.53 1.9 1.0 5.53 1.8 0.9 4.37 8.3 6.6

5.55 1.4 0.5

A,Z: 130,54 132,54 134,54

E, B, Bo: 2.42 9.5 11 2.49 10 11 2.52 11 11
2.65 1.6 0.9 3.56 1.0 3.5 3.81 1.7 4.4
3.35 0.5 2.8 4.33 8.7 8.5 4.28 8.4 9.8
4.36 8.5 7.3 5.40 1.4 4.0 5.33 0.8 4.6
5.40 1.3 3.2

A,Z: 136,54 130,56 132,56

£, B, Bo: 2.53 11 11 2.15 13 15 2.24 14 13
4.12 10 17 2.52 1.2 0.5 3.37 0.3 2.6
5.19 0.1 3.7 3.17 0.1 2.0 4.46 8.2 7.3
6.08 0.2 2.1 4.71 7.9 6.5 5.52 0.5 3.0

5.75 2.0 1.6 5.76 1.4 1.0

A,Z: 134,56 136,56 138,56

E, B, Bo: 2.29 14 13 2.32 14 13 2.32 14 13
3.58 0.6 2.9 3.83 1.0 3.1 4.24 9.5 16
4.43 8.4 8.5 4.37 8.5 10 5.26 3 x 10~3 3.4
5.56 1.2 5.4 5.44 0.5 5.5 5.82 1.4 0.4

6.13 0.01 1.7
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Table 30 (continued).

A,Z: 136,58 138,58 140,58

E, B, Bo: 2.11 16 15 2.13 16 15 2.13 17 15
3.59 0.5 2.7 3.84 0.7 2.6 4.33 9.3 16
4.51 8.3 8.5 4.45 8.5 11 5.29 3xl0-3 3.0
5.66 0.8 5.9 5.51 0.3 5.5 5.98 1.5 2.0

6.04 1.1 0.5

Table 31. Energy, B and Bo for the lowest line in case 7 b, c0 = 0.45. 
Same units as in table 3.

A,Z: 120,52 122,52 124,52

E, B, Bo: 2.00 4.8 11 2.15 3.1 7.3 2.29 1.9 4.5

A,Z: 126,52 128,52 130,52

E, B, Bo: 2.43 1.2 2.7 2.58 0.8 1.7 2.74 0.5 1.1

A,Z: 124,54 126,54 128,54

E, B, Bo: 2.16 3.1 6.9 2.30 1.9 4.3 2.43 1.2 2.7

A,Z: 130,54 132,54 134,54

E, B, Bo: 2.58 0.8 1.7 2.74 0.5 1.2 2.93 0.5 1.0

A,Z: 136,54 130,56 132,56

E, B, Bo: 3.08 3.0 3.4 2.42 1.8 2.5 2.57 1.4 2.5

A,Z: 134,56 136,56 138,56

E, B, Bo: 2.73 1.6 2.5 2.88 5.0 5.6 2.90 5.6 5.8

A,Z: 136,58 138,58 140,58

E, B, Bo: 2.53 9.7 9.5 2.56 9.9 9.3 2.56 10 9.8
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Table 32. Energy, li and Bo for the low-energy, stronger excitations in case 7 c, c0 = 0.45.
Same units as in table 3.

A,Z: 120,52 122,52 124,52

E, B, Bo: 2.12 11 20 2.26 11 20 2.41 11 18
4.26 7.4 4.7 4.28 7.4 4.6 3.12 0.05 1.8
5.09 0.1 1.5 5.15 0.5 1.9 4.30 7.4 4.6
5.40 1.3 0.01 5.19 0.9 2.1

A,Z: 126,52 128,52 130,52

E, B, Bo: 2.54 11 16 2.64 9.5 13 2.71 8.3 10
3.21 0.6 3.8 3.34 1.7 6.4 3.51 3.0 8.4
4.31 7.3 4.6 4.31 7.1 4.7 4.30 6.7 4.8
5.21 1.2 2.3 5.21 1.3 2.5 5.20 1.2 2.9

5.72 5xl0-4 2.1 5.71 3 x 10~3 2.1

A,Z: 124,54 126,54 128,54

E, B, Bo: 2.09 15 21 2.21 14 19 2.32 14 17
3.05 0.01 1.2 3.14 0.05 2.4 3.26 0.4 3.9
4.39 7.0 4.8 4.41 7.1 4.9 4.42 7.1 5.0
5.25 0.1 2.0 5.33 0.6 2.7 5.38 1.0 3.2
5.60 1.4 0.1

A,Z: 130,54 132,54 134,54

E, B, Bo: 2.40 13 15 2.47 12 13 2.52 11 11
3.41 1.0 5.3 3.58 1.7 6.1 3.77 1.9 5.1
4.41 7.1 5.3 4.40 7.0 5.7 3.88 1.2 2.8
5.39 1.3 3.6 5.38 1.2 4.1 4.36 6.7 6.4

5.34 0.9 4.7

A,Z: 136,54 130,56 132,56

E, B, Bo- 2.55 10 9.8 2.12 16 18 2.20 15 16
4.17 10 16 3.29 0.4 4.0 3.44 0.8 4.8
5.27 0.4 4.8 4.50 7.0 5.2 4.50 7.1 5.6
5.81 0.1 1.2 5.50 0.6 3.7 5.54 1.0 4.8

5.84 1.0 0.07
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Table 32 (continued).

A,Z: 134,56 136,56 138,56

E, B, B„: 2.27 15 14 2.31 14 13 2.35 13 12
3.62 1.1 4.8 3.80 0.8 2.7 4.29 9.7 15
3.74 1.1 1.4 3.90 1.3 3.5 5.36 0.2 5.2
4.48 7.1 6.3 4.44 7.2 7.5 5.67 0.5 1.0
5.52 1.0 5.4 5.46 0.6 5.6

A,Z: 136,58 138,58 140,58

E, B, Bo: 2.07 17 16 2.12 17 15 2.16 16 14
3.63 0.9 4.0 3.81 0.5 1.8 4.38 9.4 15
3.75 0.4 1.7 3.91 1.1 3.6 5.41 0.08 4.9
4.54 7.2 6.6 4.50 7.4 8.1 5.71 0.4 2.2
5.61 0.6 5.8 5.52 0.3 5.5

5.83 0.5 1.8

MeV

— two quasi particle

— theory

X experiment

~i—i—i—i—i—i i—i i i i i r i i r~T i-------- 1—i—i------------------
52 54 56 58 Z

120 122 124 126 128 130 124 126 128 130 132 134 136 130132 134 136 138 136 138140 A

Fig. 17. Energies for case 7 b. The experimental points are due to Hansen and Nathan (ref. 16).
Recent experiments (ref. 40) indicate a possible existence of 3“ states in the following nuclei:

A,Z = 130,56 : E = 1.80 MeV, A,Z = 132,56 : E = 2.06 MeV,
A,Z = 134,56 : E = 2.37 MeV.
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120 122 124 126128 130 124 126128 130 132 134 136 130 132 134 136138 136138 140 A

Fig. 18. Energies for case 7 c. When comparing this and fig. 17 we see that now the lowest 
lying proton transition comes below the neutron ones. As discussed in the text, this causes 

great changes.

filled. Therefore, all the transitions inside partly filled shells are rather weak 
in case a) for Z just above 50. In case I)) this is even more pronounced, 
since here the strong proton transition d5/2-hn/2 has a very small uv factor 
(both levels are almost empty). As seen from fig. 17, the lowest resulting 
state in b) almost sticks to the two-quasiparticle energy.

The trend in the B values follows from the above mentioned facts. 
In a) the oscillator strength in the lowest part of the spectrum is spread 
over more levels, and in b) the lowest line is especially weak, as seen from 
fig. 10. Following, in table 31, the isotopes with Z = 56 for case b), we see 
a bump in the B values at A = 136. The reason is that the lowest neutron 
two-quasiparticle energy here is increased so much that it comes pretty near 
to the lowest proton excitation, and thus Sp goes up.

In c) the resulting state of lowest energy is always the strongest one. 
For the following states there is often an appreciable difference between 
B and Bo. Still, for the strong ones, Bo > 3B1.

The experimental results by Hansen and Nathan (giving B = 45 for 
A,Z = 124,52 and 128,52) might perhaps be taken as an indication that the 
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c) levels are most reliable at least in the beginning of the region, but the 
experimental information is very incomplete. Recent experiments by Geb- 
sciiel el al. (see caption to fig. 17), indicate a possible existence of 3“ states, 
which show a more rapid energy variation than the theoretically calculated 
ones. A confirmation of the results would be very interesting.

We note that we are here in a region, where some of the nuclei might 
be fairly near to (or even have) non-spherical equilibrium shape (ref. 28). 
This will of course influence the spectra.

Case 8: 50 < Z < 82, 82 < A’
(below the region of stable quadrupole deformation).

Here, relatively few particles are available in the partly filled shells, and 
above the lowest resulting stale a strong octupole excitation is formed, largely 
governed by the intershell transitions, as shown in figs. 8 and 9. We report 
the results arising from three different level schemes:

a) protons: g7/2:0, d5/2:0.8, /i11/2:2.4, d3/2:3.13, s1/2:3.36; neutrons: 
/*7/2 :®’ /w0.83, z13/2:1.36, /5/2:1.88, 7z9/2:1.9, /q^2 :2.25 Me\ .

b) the neutron level z13/2 changed to 0.75 MeV.
c) neutron levels as in a). The proton level 7z11/2 changed to 3.2 MeV.

The proton levels come from a modification of a suggestion by Kisslingeb 
for A ~ 200 and are almost identical to the KS II levels. In case c) we studied 
the influence of placing the proton level /z11/2 between d3/2 and s1/2, where 
the neutron 7z11/2 lies in case 5. The neutron levels are due to Cohen, 
Fulmer and McCabthy (ref. 27). They do not find the z'13/2 level, which 
in a) and b) is placed in two different positions.

The second position reproduces the /7/2 — z’13/2 distance in KS II. On the 
other hand, they use values which are greatly deviating from ours, especi
ally by placing the 7z9;2 level 0.72 MeV below /7/2. For the three cases 
c0 = 0.45, c0 = 0.47 and c0 = 0.41, respectively, were used (see comment 
below).

Another calculation was run, using the proton levels from case a) and 
neutron levels, partly based on a suggestion by Kisslingeb: /7/2:0, 7z9/2:0.2, 
z13/2:1.5, jo3/2:1.75, /5/2:2.3, p12:2.9 MeV. The results from this calculation 
are the same as those from case a) for A’ = 82. For the greater AT.s- the ener
gies are just a little higher; they are not reported.

For case a) the lowest proton transitions are the weak £/7/2”^n-2 an(i 
the strong (for Z > 56 lower lying) <75/2 - 7i11/2, the iw factor of which changes
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MeV

Be 32

Bth 29

56 58 60 62 Z
138 140142 142 144 146148 144 146 148 150 A

Fig. 19. Energies for case 8a with c0 = 0.45 and for case 8c with c0 = 0.41. “Two-quasiparticle” 
refers to the lowest lying two-quasiparticle energy in case 8 a. The experimental points are due 

to Hansen and Nathan (ref. 16) and E. Veje (ref. 48) (the B value).

from 0.2 al Z = 56 to 0.8 at Z = 62. The neutron transitions are the weak 
zi3/2~^n/2 with a small uv factor and the strong A7/2 — z'i3/2 with a uv factor 
varying from 0 to 0.72.

Figs. 8 and 9 illustrate how the picture changes when going away from 
the closed neutron shell. The most remarkable feature is the drop in the 
energies, caused by the increasing strength of the low-energy neutron lines, 
which lie above the proton two-quasiparticle excitation of lowest energy.

In case c) the proton quasiparticle energies are increased. This gives 
the neutron variation a greater influence, but causes an overestimate of the 
high energies. Changing two protons into two neutrons, i.e. going from 
A,Z = 142,58 to 142,60 or from 148,60 to 148,62 gives experimentally, like 
in case c), that the energy of the lowest 3~ state goes up, whereas the opposite 
is true for a). In this sense b) is a little better than a).

For the excitation of lowest energy the neutron excess gives rise to > B, 
i.e. Sn > Sp, even when the neutron shell is closed. The contributions from 
S2 are partly responsible for this. For A,Z = 142,60 Sf is somewhat greater 
than 8”.
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Table 33. 1 Energy, B and Bo for the low-energy, stronger excitations in case 8 a, c0 = 0.45.
Same units as in table 3.

A,Z: 138,56 140,58 142,58

E, B, Bo: 2.72 7.8 11 2.38 11 14 2.02 11 23
2.97 2.6 4.3 3.71 6.7 19 2.67 1.7 0.1
3.67 5.6 17 4.69 1.8 0.03 3.98 7.8 16
4.69 1.8 0.02 5.70 0.01 1.8 5.24 0.1 1.8
5.66 0.03 2.4 5.83 0.03 1.7

A,Z: 142,60 144,60 146,60

E, B, B„: 1.92 15 16 1.72 17 26 1.52 19 36
3.77 6.6 20 4.03 7.6 16 4.06 1.2 2.5
4.70 1.9 0.05 5.26 0.03 1.7 4.22 7.5 12
5.12 0.01 1.5 5.61 0.9 1.8 5.10 0.01 1.9
5.56 0.8 3.2

A,Z: 148,60 144.62 146,62

E, B, Bo: 1.36 21 46 1.51 21 21 1.35 25 32
4.30 8.8 12 3.81 6.8 20 2.44 0.04 2.7
5.18 0.01 4.2 4.70 1.8 0.05 4.06 7.7 16
5.35 0.1 1.7 5.12 3 x 10“3 1.5 5.71 0.4 3.0

5.63 0.5 4.7 5.80 0.5 2.3

A,Z: 148,62 150,62

E, B, Bo: 1.19 29 44 1.04 33 57
2.34 0.03 2.6 2.29 0.2 2.4
4.07 0.8 1.8 4.32 8.9 12
4.24 7.9 12 5.19 0.01 4.2
5.85 1.0 3.6 5.36 0.01 2.1

Above the transitions inside the partly filled shells there is a rather strong 
line for which B is only a fraction of Bo in the neutron magic nuclei. (The 
transition is governed largely by the neutron transitions).

When we had finished our above mentioned calculations, a new neutron 
level scheme became available, based on a tentative and preliminary inter
pretation of some experimental results due to Yang et al. (ref. 29):

/7/2;0> ^9/2 /5/2-l-^ an(^ 1’13/2 i 2.0 MeV .
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Table 34. The first row gives E, B and Bo for the lowest excited state from case 8 b, c0 = 0.47, 
and the second row those for’the"same state in case 8*c, c0 = 0.41. Same’units as in table 3.

A,Z: 138,56 140,58 142,58

E, B, Bo: 2.74 6.4 9.2
3.03 17 35

2.41 9.9 12
2.82 17 29

1.84 7.2 19
1.99 11 29

A,Z: 142,60 144,60 146,60

E, B, Bo: 1.96 13 15
2.37 20 29

1.66 14 24
1.84 17 37

1.45 15 33
1.49 21 50

A,Z: 148,60 144,62 146,62

E, B, Bo: 1.32 17 42
1.23 25 66

1.56 19 19
1.95 27 33

1.36 22 30
1.57 28 47

A,Z: 148,62 150,62

E, B, Bo: 1.18 25 41
1.24 33 65

1.06 28 52
0.97 41 90

They did not see the px/2 level which we then placed al 2.3 MeV. The 
precise location of this level should have only a very small influence on 
the resulting spectrum.

When using this level scheme and the a) protons, the energy for the 
lowest state was changed by less than 0.1 MeV, the variation with neutron 
number N being a little slower than in a). The B values were increased 
by 10-20%. For the higher lying strong, resulting states the changes were 
rather small. The main difference from a) to this case is that c0 was changed 
from 0.45 to 0.43 to obtain the best energy fit.

Another calculation was performed with the Yang et al. data and protons 
from case c). When c0 is chosen to fit the lowest resulting energy in A,Z = 
150,62, (c0 = 0.393), the agreement with experiment becomes poorer than 
in c) (less steep variation of energy), especially for the Z = 60 nuclei. B 
is increased by 10-20%.

As seen above, in this region we have had some difficulties in fitting 
x. By just a small change in c0 we are able to bring the lowest resulting 
state in A,Z = 150,62 down to zero energy. This warns us to be suspicious 
on the validity of our simple treatment. It is a well-known trend from the 
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quadrupole ease that, when the resulting state is pressed far down from the 
lowest two-quasiparticle mode, the simple quasi-boson treatment breaks 
down. Anharmonicity effects and the Pauli principle should possibly have 
been taken into account. For the octupoles the situation should in general 
be better (the excitations are not so collective), one of the exceptions perhaps 
being just the nuclei below the rare-earth deformed region. It should be 
further stressed that the approximation of neglecting coupling between 
quadrupole and octupole vibrations might be especially bad here, near the 
domain of stable quadrupole deformation, where the 2 + vibrations are very 
strong and of low energy.

Case 9: Z < 82, N < 126,
(above the region of stable quadrupole deformation).

In this final case only few proton and neutron holes in the partly filled 
shells are available. A higher lying state is formed, stronger than the lowest 
resulting mode.

Two level schemes were used:

a) neutron levels suggested by Kisslinger (ref. 26) (almost identical to KS 
II) /i9/2:0, /7/2:0.2, i13/2 :0.92 , p3/2:1.65, /5/2:1.98, p1/2: 2.55 MeV; proton levels 
from calculations on Pb208 by Gillet et al. (ref. 30) <77/2:0, d5/2:1.69, hll/2: 
2.34, d3/2:3.83, s1/2:4.18 MeV.

b) same neutron levels, proton levels from a recent experiment by Na
than (ref. 31) <y7/2:(), d5/2:1.73, 7i11/2:2.06, c/3/2:3.05 and s1/2:3.40 MeV.

The single-particle energies in the neutron shell above the partly filled 
shell are taken from a report on stripping experiments (ref. 32).

The proton energies above the partly filled shell are the values used bv 
Gillet et al. (refs. 33 and 30). The other single-particle energies come from 
the simple shell-model calculations (ref. 13) as explained before. The a) 
calculation was performed especially with the aim to compare it with the 
calculation by Gillet et al. (ref. 30).

The neutron single-particle energies are not exactly equal to the Gillet 
ones, but the differences are so small that it might be reasonable not to take 
them into account.

The transitions inside the partly filled shells are for the protons the weak 
,77/2 ^n/2 and the strong d5/2 7i11/2 transition and for the neutrons the weak 
/i9/2 z13/2 and the strong /7/2 z13/2 transition, but all the contributing levels 
are almost filled. This is especially pronounced for the protons where the 
uv factor is very near to zero.
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Table 35. Energy, B and Bo for the low-energy, stronger excitations in case 9 a, c0 = 0.413. 
Same units as in table 3.

A,Z: 192,76 192,78 194,78

E, B, Bo: 2.49 3.0 15 2.21 4.7 20 2.48 4.2 18
4.53 13 51 4.45 20 38 4.31 21 50
5.55 5.9 16 5.05 1.7 15 5.54 5.1 13

A,Z: 196,78 198,78 196,80

E, B, Bo: 2.76 4.4 18 3.03 5.6 23 2.47 6.1 21
4.10 20 57 3.88 19 60 4.08 28 50
5.38 3.4 12 5.18 1.5 8.1 5.69 1.0 10

A,Z: 198,80 200,80 202,80

E, B, Bo: 2.74 6.6 22 3.00 9.4 31 3.19 21 67
3.93 28 58 3.75 24 59 3.60 7.9 22
5.34 3.9 9.1 5.18 1.8 8.1 3.66 4.7 12

A,Z: 204,80 202,82 204,82

E, B, Bo: 3.13 34 112 2.96 16 43 3.10 33 88
3.65 29 58 3.57 9.8 21
5.87 1.8 11 5.77 1.1 10

A,Z: 206,82 208,82

E, B, Bo: 3.01 45 125 2.79 49 147

The greatest role is played by the strong transitions between the shells, 
giving a rather low-lying and strong octupole state in the doubly magic 
7^208 (fig. 7).

For the lower A values, there is a strong higher-lying 3_, whereas the 
lowest one is rather weak and near to the two-quasiparticle energy. Because 
of the neutron excess and the weakness of the proton transitions inside the 
partly filled shell, B for the lowest state is smaller than Bo.

One more calculation was run, using the a) neutron levels and proton 
levels from KSII:

t/7/2:0, d5/2:0.8, ä11/2:2.1, d3/2:2.6 and s1/2:2.95 MeV.
Mat.Fys.Medd.Dan.Vid.Selsk. 35, no. 1. 6



82 Nr. 1

Table 36. Energy, B and _B0 for the low-energy, stronger excitations in case 9 b, c0 = 0.404. 
Same units as in table 3.

A,Z: 192,76 192,78 194,78

E, B, Bo: 1.64 0.9 1.2 2.16 7.5 25 2.32 4.2 9.6
2.47 4.0 18 4.38 26 48 2.48 2.9 14
4.41 18 58 5.04 1.2 11 4.22 25 56
5.46 2.0 3.2 5.63 5.4 7.3 5.50 6.1 12
5.52 4.3 10 5.79 0.8 3.0

A,Z: 196,78 198,78 196,80

E, B, Bo; 2.34 2.3 4.0 2.34 2.1 3.6 2.43 8.7 27
2.74 5.3 21 3.00 8.0 30 4.00 33 57
3.99 23 60 3.78 21 61 5.40 4.5 4.6
5.34 4.1 11 5.16 1.7 7.7 5.67 0.9 6.9
5.86 2.8 3.6 5.68 4.3 4.7

A,Z: 198,80 200,80 202,80

E, B, Bo: 2.69 9.9 28 2.77 2.9 6.4 2.77 3.0 6.8
3.84 31 63 2.96 12 37 3.10 28 82
5.30 4.8 9.1 3.67 25 58 3.57 8.3 21

5.15 2.4 8.0 3.65 1.6 3.7
4.98 0.7 5.2

A,Z: 204,80 202,82 204,82

E, B, Bo: 2.76 6.5 17 2.90 24 59 2.98 44 109
3.01 34 109 3.57 28 53 3.54 8.0 16
4.62 4.0 0.4 5.02 4.6 3.8 4.93 2.3 4.7
5.39 4.2 5.3 5.80 2.9 8.5 5.72 1.8 9.2

A,Z: 206,82 208,82

E, B, Bo-. 2.85 53 140 2.62 58 165
4.59 4.2 0.1 4.56 4.3 0.4
4.80 0.3 3.3 5.08 2.4 1.1
5.44 1.5 3.5 5.46 1.9 2.5
5.68 0.8 5.2
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Fig. 20. The lowest lying energy, B value and two-quasiparticle energy for the nuclei in case

9 b, where c0 = 0.404. The experimental values come from ref. 41 and ref. 49.

Although the proton energies are quite different from those above, the result
ing states are only affected little, especially the state of lowest energy. The 
quantity c0 was 0.413 in a) and 0.404 in b). The results are given in tables 
35 and 36.

In Pô208 the agreement between theory and experiment is quite satis
factory, but it must be remembered that c0 is chosen lower than in the other 
cases.

If < 0 is used 13 will exceed the experimental value since I30 > 13.

Comparison with the calculation by Gillet et al.

As mentioned above, we are able to compare our results with those 
obtained by Gillet et al. (ref. 30) in Pb208 when using a spin and isospin 
dependent force in which the radial dependence is of Gaussian type in the 
distance between the two nucleons. In table 37 and table 38 we quote the 
amplitudes p and q for quasiparticle pair creation and annihilation, respec
tively, from the lowest neutron and proton modes to the lowest resulting 
state. It is remarkable that all the amplitudes except those for the neutron 

6si/2 quasiparticle excitation have the same sign for the two quite 
different forces.

6*
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Table 37. For Gillet’s calculation (ref. 30) and for the calculation from case 9 a, the table 
gives E, p = p(a, jx, j2) and ? = ?(a,Ji,j2) for the lowest neutron particle-hole excitations, 
contributing to the first octupole excitation in Pb208. E is the energy for the relevant particle

hole excitation.
Since there is some difference between Gillet’s phase convention (ref. 42) and ours, the sign 
for our amplitudes p and q in this table is changed to be in agreement with Gillet’s choice of 

phase.

transition

5 f s 12~o g g / g......................................

o Psl2~6 <7 9 I 2............................................

5f 5/2_6 1 11/2...................................

5Pl/2—6<75/2.......................................

5 / 5/2—6d5/2.......................................

5/ 7/2~6 g 9/ 2.......................................

f*P3/2 —6^5/2.......................................

5/ 5/2~f’S 1/2.......................................

5 Pll2~6g 7/2.......................................

5 f il2~6g 7/2.......................................

5 d3i 2—6 f5/2.......................................

Gillet this
E

calculation
E P <1 P <1

4.01 0.19 0.03 4.17 0.21 0.04
4.34 -0.42 -0.07 4.50 -0.50 -0.12
4.80 0.39 0.07 4.94 0.41 0.12
5.02 0.08 0.02 5.16 0.23 0.07
5.59 0.06 0.02 5.73 0.11 0.04
5.78 -0.20 -0.06 5.95 -0.09 -0.03
5.92 -0.05 -0.02 6.06 -0.15 -0.06
6.04 -0.08 -0.04 6.20 0.12 0.04
6.14 0.17 0.04 6.07 0.20 0.07
6.71 0.13 0.05 6.64 0.15 0.06
6.93 0.05 0.02 6.69 0.11 0.04

Table 38. E, p and q for the lowest proton particle-hole excitations contributing to the first 
octupole state in Pb208. For further explanation, see caption to table 37.

transition
E

Gillet

P Q
this
P

calculation
?

4.61 -0.47 -0.08 -0.33 -0.08
4 S i / o—5 f f n........................ 5.16 0.37 0.08 0.22 0.071/ 2 v / 7'2
4 d» 10—5 /-■>........................ 5.51 -0.15 -0.04 -0.11 -0.03
4 d - > 0—5 haï»........................ 6.75 -0.07 -0.02 -0.06 -0.020'2 9'2........................

7.26 -0.1.3 -0.05 -0.09 -0.043/2 I 3'2 ’ * ' ..................
4 s , 0-5fco........................ 7.56 -0.15 -0.06 -0.10 -0.041 / 2 / 5 / 2........................

7.65 0.14 0.06 0.10 0.055'2 / 7 / 2........................
5 /in / 0—6 Z i a / ......................... 7.72 -0.17 -0.07 -0.17 -0.084 4'2 to'*«
i d — 5 f 7.91 -0.10 -0.04 -0.08 -0.043 / 2 'J 1 5 / 2........................

Concerning their magnitudes, there is also a quite strong correlation. 
The most interesting feature is that the Gillet neutron amplitudes in general 
are a little smaller than our amplitudes, whereas the proton ones are about 
50 °/0 greater.
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This is consistent with the result that Gillet et al. reach 6O°/o of the 
experimental B value (which is only known ± 3O°/o, ref. 41) without using 
any renormalization of the charge. If we took only the AN = 1 transitions 
into account (keeping the resulting energy constant) B would go down with 
a factor of two.

A stronger influence from the proton excitations on the lowest resulting 
level is obtained when an isospin dependent force is introduced. Thus, when 
xq = - 0.5 x0 is used and x0 is changed to give approximately the same energy 
as when = 0, the B value is increased by 5O°/o, which means that it 
becomes greater than the experimental value. (c0 = 0.38, Xj = - O.5xo gives 
E = 2.83 MeV, B = 72.)

16. Concluding remarks

The most striking feature we meet when we start the numerical calcula
tions is the very great sensitivity of the results to the energies of the shell
model levels inside the partly filled shells, and the incomplete and partly 
contradictory information which is available concerning these energies.

Il looks as if one may sometimes take different shell-model level schemes 
for all of which it is possible to argue reasonably well, and obtain very 
different quantitative pictures for the lowest part of the resulting spectrum, 
especially for the B values. This should be kept in mind, when our conclu
sions are studied.

When the number of experimental results increases, and when more 
modes of excitation are to be described from the same quasiparticle energies, 
we may get a better insight into the variation of e(j), and then also into the 
precise validity of the theory.

The fitting of the octupole force constant

For simplicity reasons a major part of the calculation was made, using 
an isospin independent octupole force constant.

In general it has been possible to fit the experimental energies of the 
lowest resulting excitation reasonably well with a smoothly varying x. In the Ni 
region we had to use a value which was a few percent larger, and in Zr 
a value which was a few percent smaller. Although difficult to say definitely 
(cf. sect. 14) there seems to be some tendency for a weaker x variation 
with A than obtained by a simple scaling argument (cf. sect. 2).
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This might be taken as an indication that the surface region of the nucleus 
should have a stronger weight than assumed by our simple Hamiltonian.

The magnitude and variation of x are in general agreement with the 
parameters used by Soloviev et al. (ref. 3), although some details are 
different. E.g. they take only part of the single-particle levels into account. 
When more and more levels are included, their x value approaches our 
value (ref. 43).

They also use another (slower) A variation inside each of the two regions 
of deformed nuclei around A ~ 180 and A ~ 240, whereas the variation 
from the first region to the second is approximately the same as our overall 
variation.

From the calculations on quadrupole vibrations (ref. KS II) it is well 
known that when the lowest resulting energy is pressed far down from the 
lowest two-quasiparticle excitation, the fitting of x becomes very difficult. 
Even a small change in x may bring the resulting energy down to zero.

This indicates that the simple quasiboson approximation breaks down. 
When the state is very collective, the Pauli principle and various anharmo- 
nicities should presumably have been taken into account (ref. 44).

Since the octupole vibrations are only moderately collective, the simple 
theory should work better for these than for the quadrupoles.

An exception is perhaps the nuclei just below the deformed rare-earth 
region where the nuclei seem to be able to undergo octupole deformation 
rather easily. However, there is in this case a great uncertainty in the single
particle energies, and a definite conclusion is difficult.

The general distribution of oscillator strength

From the calculation it appears that the octupole-octupole force sucks 
5-10 °/0 of the total B oscillator strength down and places it on some few, 
strong lines in the lowest part of the spectrum. While B for these lines 
varies quickly, B x E shows a much slower variation.

The rest of the oscillator strength is distributed in the Fim0 and 3hco0 
regions. In the present model it will not be concentrated to any high degree 
at some few levels but is spread rather smoothly over large energy intervals. 
One of the more interesting results is that very strong lines just below or 
above the 3ha>0 region can hardly be expected, but it should be stressed 
that we have used a crude model and parameters which are not very well 
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known. There is especially poor knowledge about the energy distribution 
of the unperturbed excitations in the 3ha>0 region.

The influence of the shell structure is clearly seen. E.g. the low-energy 
part of the oscillator strength in the typical case is split into two parts because 
of an energy gap in the unperturbed spectrum. This gap appears just above 
the two-quasiparticle excitations inside partly filled shells.

It is worthwhile to note that the octupole excitation of lowest energy in 
some sense only represents a fine structure in the resulting spectrum, although 
it has been the subject of almost all theoretical and experimental investiga
tions and is the most easily observed. The fine structure occurs because 
the spin-orbit splitting pushes a level down, so that some particles outside 
the core may change orbit almost without change in energy and make large 
octupole moments. An essential part of the oscillator strength is left on higher 
levels.

The low energy part of the spectrum

From the calculation it is seen that the energy of the lowest resulting state 
very intimately follows the variations in energy and strength of the very 
lowest two-quasiparticle modes. By studying the single-particle level scheme 
and the Riling of the levels it is possible in a very simple way to understand 
the variations in position and strength of the strong excitations of low energy.

The few measured B values are reproduced by the calculation, in general 
within 3O°/o.

This is the best we could expect from the simple theory.
AVe may stress that the calculation has been performed without intro

ducing any effective charge. If the 3/1 co0 unperturbed transitions were 
not included, the B values would be about a factor of two smaller. Some 
uncertainty is introduced in B by simply using harmonic oscillator values 
for the strength and energy of the high-lying transitions.

There is some indication that the theory systematically underestimates 
the B value and it is not difficult to find possible reasons for this. One is 
that an isospin independent octupole force is used. We have seen how in 
almost all cases introduction of an isovector component leads to an increase 
in the resulting B value. We have not gone into a systematic study but may 
mention that in the Sn region where the discrepancies between theory and 
experiment for the B values are especially great, introduction of + 0 
will have an especially large effect. Another possible reason is the systema- 
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tic error due to the use of the same harmonic oscillator potential for protons 
and neutrons. Thus, because of the neutron excess, the protons are kept 
too close to the nuclear centre and contribute too little to the transition 
moments. Finally, it is a more trivial possibility that a somewhat stronger 
pairing force should have been used. This would give higher two-quasi- 
particle energies. To reproduce the experimental energies a stronger octupole
octupole force should be used, the state would be more collective, i.e. B 
greater.

The isospin properties

In the calculation it has been found that the low-energy strong excitations 
to a good degree are of r = 0 type, although r = 1 impurities may give 
rise to interesting effects, e.g. so that the “strength” of the excitation depends 
of whether it is measured with the help of inelastic scattering of protons,or 
with a scattering or with Coulomb excitation. For the models which we have 
used, and for Xj values from a tentative theoretical estimate, there is no 
strong tendency towards concentrating the r = 1 oscillator strength on a 
single level.

When using a pure x0 force we make a systematic error, which however 
should be small, when the energies of the strong excitations of low energy are 
considered. For B there may be a more significant change when Xi is intro
duced, as mentioned above.

It is very difficult to determine the strength of the r = 1 part of the long-range 
force. One possibility might be to study the ratio of isospin Hip to non-isospin 
flip in the excitation of 3' states by inelastic nucleon scattering. Another 
one is to study relative cross sections for inelastic scattering processes, using 
particles with different isospins and exciting different 3“ levels in the same 
nucleus.

It should be less rewarding to study, e.g., the lowest 3“ state in neighbouring 
nuclei, since the change in isospin character with a change in the atomic 
number is not very rapid.

Acknowledgements

The author is indebted to many guests and members of the staff of the 
Niels Bohr Institute, University of Copenhagen, for valuable comments and 
discussions. He especially wants to thank Drs. O. Nathan and 0. Hansen 



Nr. 1 89

for stimulating discussions on the experimental aspects, professors L. Kiss- 
LiNGER and V. Gillet for comments on the energies of the single-particle 
levels, and professor S. Yoshida for the explanation of some points in his 
calculation of quadrupole and octupole vibrations (ref. 1).

Also remarks from mag. scient. J. P. Bondorf are much appreciated. 
Primarily, however, the author feels very indebted to professor A. Bonn 
for his kind interest and many valuable discussions and suggestions concern
ing this work.

References
1. S. Yoshida: Nucl. Phys. 38, 380 (1962).
2. M. Kobayasi and T. Marumori: Progr. Theor. Phys. 23, 387 (1960);

R. Arvieu and M. Veneroni: Compt. Rend. 250, 992, 2155 (1960);
A. Bohr and B. Mottelsen: Lectures on Nuclear Structure and Energy Spectra, 
to be published; in the following called BM.

3. V. G. Soloviev: Phys. Lett. 6, 126 (1963).
V. G. Soloviev, P. Vogel and A. A. Korneichuk: Preprint, Dubna 1964;
Lu Yang, V. G. Soloviev, P. Vogel and A. A. Korneichuk: Preprint, Dubna 
1964;
D. Bés: Nucl. Phys. 49, 544 (1963);
E. R. Marshalek: Thesis, UCRL 10046 (1962);
E. R. Marshalek and O. Rasmussen: Nucl. Phys. 43, 438 (1963); cf. also ref. 6.

4. L. Kisslinger and R. A. Sorensen: Revs. Mod. Phys. 35, 853 (1963); in the 
following called KS II.

5. S. T. Belyaev: Mat. Fys. Medd. Dan. Vid. Selsk. 31, no. 11 (1959).
6. For a presentation of the theory and the approximations involved, see, e.g., 

A. M. Lane: Nuclear Theory, Benjamin, New York 1964, or BM or KS II.
7. See, e.g., G. E. Brown: Lectures on Many-Body Problems, Nordita 1962, or 

G. E. Brown: Unified Theory of Nuclear Models, North Holland Publishing 
Company, Amsterdam 1964.

8. A. M. Lane and J. M. Soper: Phys. Lett. 1, 28 (1962).
9. D. Robson: Phys. Rev. 137, B 535 (1965).

10. L. A. Sliv: Private communication.
11. O. Nathan and S. G. Nilsson: Collective Nuclear Motion and the Unified 

Model; in Alpha, Beta and Gamma Ray Spectroscopy, Ed. Kai Siegbahn, North 
Holland Publishing Company, Amsterdam 1965.

12. L. S. Kisslinger and R. A. Sorensen: Mat. Fys. Medd. Dan. Vid. Selsk. 32, 
no. 9 (1960); in the following called KS I.



90 Nr. 1

13. S. G. Nilsson: Mat. Fys. Medd. Dan. Vid. Selsk. 29, no. 16 (1955);
B. Mottelson and S. G. Nilsson: Mat. Fys. Skr. Dan. Vid. Selsk. 1, no. 8 (1959).

14. B. L. Cohen: Phys. Rev. 127, 597 (1962).
15. L. Silverberg: Arkiv för Fysik 20, 341 (1962) and private communication.
16. O. Hansen and O. Nathan: Nucl. Phys. 42, 197 (1963).
17. B. L. Coiien, R. A. Fulmer, and A. L. McCarthy: Phys. Rev. 126, 698 (1962).
18. R. H. Fulmer and W. W. Dalhnik: Nuclear Structure Studies in the Ni Iso

topes with (d, /) reactions, preprint, March 1965.
19. B.L. Coiien: Phys. Rev. 125, 1358 (1962).
20. B. L. Cohen: Phys. Rev. 127, 597 (1962).
21. B. Cujec: Phys. Rev. 131, 735 (1963).
22. B. L. Cohen and R. E. Price: Phys. Rev. 121, 1441 (1961).
23. B. Cujec: Private communication.
24. H. Faraggi et al. : Phys. Lett. 13, 244 (1964) ;

H. Faraggi: Private communication.
25. D. L. Allan et al.: Nucl. Phys. 66, 481 (1965).
26. L. Kisslinger: Private communication.
27. R. A. Fulmer: A. L. McCarthy and B. L. Coiien: Phys. Rev. 128, 1302 (1962). 

They do not see the d5/2 level but expect it to at least 0.6 MeV below ^9/2.
28. E. Marshalek, L. W. Person and R. K. Sheline: Revs. Mod. Phys. 35, 108 

(1963).
29. F. C. Yang, P. R. Christensen, B. Herskind and R. Borchers: Private com

munication.
A later interpretation of the experimental data gives the following single
particle energies: /’7/2:0, p3/2:0.89, i13/2 : 1.38, p1/2:1.61, /‘5/2:1.91 and 7?9/2: 
2.00 MeV.

30. V. Gillet, A. Sanderson and A. Green: Phys. Lett. 11, 44 (1964).
31. S. Hinds et al.: Phys. Lett. 17, 302 (1965).
32. B. L. Cohen and Paresh Mukherjee: Phys. Rev. 127, 1284 (1962).
33. V. Gillet: Private communication.
34. M. Crut et al.: Nucl. Phys. 17, 665 (1960);

H. W. Broek: Phys. Rev. 130, 1914 (1963);
K. Matsuda: Nucl. Phys. 33, 536 (1962);
H. Crannel et al.: Phys. Rev. 123, 923 (1961);
cf. also the references in ref. 1 and ref. 11.

35. R. H. Helm: Phys. Rev. 104, 1466 (1956).
36. W. Darcey: Private communication and Proceedings of the Paris Conference 

1964, Centre National de la Recherche Scientifique, Paris 1965.
37. M. Sakai et al.: Phys. Lett. 8, 197 (1964).
38. F. K. McGowan, R. L. Robinson, P. H. Stelson and J. L. C. Ford : Nucl. Phys. 

66, 97 (1965).
39. D. Alkazov, J. P. Gangrinskij, J. K. Lemberg, J. I. Udralov: Tibilsi Confe

rence, Februar 1964.
40. R. A. Ricci: Private communication;

G. Gerschel et al.: Proceedings of the Paris Conference 1964, Centre National 
de la Recherche Scientifique, Paris 1965.

41. H. Crannel et al.: Phys. Rev. 123, 923 (1961).



Nr. 1 91

42. V. Gillet and N. Vinh Mau: Nucl. Phys. 54, 321 (1964).
43. P. Vogel: Private communication.
44. K. Ikeda, T. Udagawa and H. Yamamura: preprint;

B. Sørensen: Thesis, Copenhagen 1965.
45. B. Rosner: Phys. Rev. 136, B 664 (1964).
46. R. L. Silva and G. E. Gordon: Phys. Rev. 136, B 618 (1964).
47. R. K. Jolly: Phys. Rev. 136, B 683 (1964).
48. E. Veje: to be published.
49. Landolt Börnstein, Zahlenwerte und Funktionen, Neue Serie, Springer Verlag, 

Berlin 1961.
50. See, e.g., A. M. Lane: Nucl. Phys. 35, 676 (1962).

Indleveret til Selskabet den 24. november 1965.
Færdig fra trykkeriet den 8. august 1966.




